yingweiwo

Levonorgestrel

Alias: Levonorgestrel, Norgestrel, Microval, Postinor, Mirena, Plan B
Cat No.:V1738 Purity: ≥98%
Levonorgestrel (Norgestrel, Microval, Postinor, Mirena, Plan B) is a female hormone that can prevent ovulation and has been used in many birth control pills.
Levonorgestrel
Levonorgestrel Chemical Structure CAS No.: 797-63-7
Product category: Estrogenprogestogen Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
10g
Other Sizes

Other Forms of Levonorgestrel:

  • Dydrogesterone-d6 (dydrogesterone d6)
  • Dydrogesterone
  • Levonorgestrel-d8 (D-Norgestrel-d8)
  • Norgestrel-d6 (levonorgestrel d6)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Levonorgestrel (Norgestrel, Microval, Postinor, Mirena, Plan B) is a female hormone that can prevent ovulation and has been used in many birth control pills. Levonorgestrel is a synthetic progestin that binds to progesterone and androgen receptors/AR but not the estrogen receptor/ER. It induces apoptosis in ovarian epithelium cells. Levonorgestrel suppresses the stimulation of progesterone secretion induced by oLH, dibutyryl-cAMP and Pregnenolone in rats luteal cells. Levonorgestrel also inhibits constrictions evoked by either a high potassium (K(+)) solution or phorbol myristate acetate (PMA) in the absence and presence of extracellular calcium (Ca(2+)). Levonorgestrel is useful within 120 hours as emergency birth control. It becomes less effective the longer after sex and only works before pregnancy has occurred. It is also combined with an estrogen to make combined oral birth control pill.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Levonorgestrel (5-25 mg/mL; 72 h) has the concentration-dependent ability to suppress cell growth and increase apoptosis in uterine leiomyoma cells [1]. Levonorgestrel (0.1-100 μM; 4 h) can decrease the generation of progesterone at high concentrations (100 μM) in luteal cells, while it has no effect at low doses (0-10 μM) [2].
ln Vivo
In Sprague–Dawley rats, levonorgestrel (0.005-0.15 mg/kg; once every two days for three weeks) decreases bone turnover, inhibits bone resorption, and raises bone mineral content [3]. Apodemus agrarius mice can successfully avoid pregnancy when levonorgestrel (1 mg/kg; gavage; once daily for three consecutive days) is combined with ethinyl estradiol [4].
Cell Assay
Western Blot Analysis[1]
Cell Types: Uterine leiomyoma cells
Tested Concentrations: 5 mg/mL; 10mg/mL; 20 mg/mL
Incubation Duration:
Experimental Results: Inhibited Bcl-2 and survivin expression at high concentrations (10 mg/mL and 20 mg /mL). Dramatically increased the phosphorylation of P38 phosphorylation and increased Caspase-3 expression at high concentrations (10 mg/mL and 20 mg/mL).
Animal Protocol
Animal/Disease Models: Apodemus agrarius model[4]
Doses: 1 mg/kg
Route of Administration: intragastric (po) administration (ig), one time/day for three days
Experimental Results: Damaged the sperm ducts, decreased sperm production in combination with quinestrol. decreased population density in the field in combination with quinestrol.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Norgestrel is absorbed from the gastrointestinal tract, metabolised by the liver and excreted in the urine and faeces as glucuronide and sulphate conjugates.
(14)C-Norgestrel was administered to seven human subjects and 43% of dose was excreted in the urine within 5 days; the biological half-life of the radioactivity was 24 hr. Enzymic hydrolysis released only 32% of the urinary radioactivity and a further 25% was excreted as sulphate conjugates. The metabolites excreted in the urine were much less polar than those following the administration of the related compounds, norethisterone or lynestrenol. The 3alphaOH,5beta and 3betaOH,5beta isomers of the tetrahydronorgestrel (13beta-ethyl-17alpha-ethynyl-5 beta-gonane-3alpha,17beta-diol) were isolated from urine and identified by mass spectrometry and thin-layer and gas-liquid chromatography. Plasma radioactivity decreased more rapidly than after the administration of norethisterone and lynestrenol. About 2% of the administered dose was converted to acidic compounds. There was no apparent difference in the rate of excretion of radioactivity or in the metabolites after either oral or intravenous administration of norgestrel.
The binding of different synthetic steroids, used in hormonal contraception, to Sex Hormone Binding Globulin (SHBG) was studied by measuring their ability to displace tritiated testosterone from SHBG in a competitive protein binding system. Only 19-nortestosterone derivates had any significant ability to displace testosterone from SHBG, d-norgestrel (d-Ng) being the strongest displacer. Increasing the SHBG levels in women with previous constant plasma d-Ng levels increased these levels two- to sixfold. It is concluded that SHBG is the main carrier protein for d-Ng. The strong testosterone displacing activity of d-Ng might also explain androgenic side effects observed with d-Ng containig oral contraceptives.
Metabolism / Metabolites
(14)C-Norgestrel was administered to seven human subjects and 43% of dose was excreted in the urine within 5 days ... Enzymic hydrolysis released only 32% of the urinary radioactivity and a further 25% was excreted as sulphate conjugates. The metabolites excreted in the urine were much less polar than those following the administration of the related compounds, norethisterone or lynestrenol. The 3alphaOH,5beta and 3betaOH,5beta isomers of the tetrahydronorgestrel (13beta-ethyl-17alpha-ethynyl-5 beta-gonane-3alpha,17beta-diol) were isolated from urine and identified by mass spectrometry and thin-layer and gas-liquid chromatography. Plasma radioactivity decreased more rapidly than after the administration of norethisterone and lynestrenol. About 2% of the administered dose was converted to acidic compounds. There was no apparent difference in the rate of excretion of radioactivity or in the metabolites after either oral or intravenous administration of norgestrel.
The comparative metabolism of dl-, d-, and l-norgestrel was investigated in African Green Monkeys (Cercopithecus aethiops). Total (14)C excretion in urine after a single oral dose of (14)C-dl-norgestrel (1 mg/kg) was significantly higher (51.4 +/- 5.0%) than that observed after administration of the d-enantiomer (37.5 +/- 5.4%) but not the l-enantiomer (44.2 +/- 8.9%). In all cases, the major part of the urinary radioactivity was present in a free fraction (48-62%), while an additional 13-27% was released by beta-glucuronidase preparations. No sulfate conjugates were detected. At least one major (16beta-hydroxylation) and one minor (16alpha-hydroxylation) metabolic pathway were stereoselective, i.e., they are operative with the I-but not the d-enantiomer. Three metabolites, 16beta-hydroxynorgestrel, 16alpha-hydroxynorgestrel, and 16-hydroxytetrahydronorgestrel (believed to be 16beta) were only detected in urine samples obtained from (14)C-dland -l-norgestrel-dosed animals. Following (14)C-d-norgestrel administration, 3alpha, 5beta-tetrahydronorgestrel was found to be the major urinary metabolite. These observations are compared with those reported earlier on the urinary metabolites of dl-norgestrel in women.
The in vitro metabolism of stereo-isomers (d, l and the racemic mixture dl) of norgestrel by a microsomal fraction from rabbit liver was investigated. The metabolism of the biologically active l-norgestrel was more rapid than that of d-norgestrel (sic.) which is biologically inactive. This was mainly due to the more ready conversion of l-norgestrel to ring-A reduced metabolites. There was no difference between the two isomers in respect of the amount undergoing hydroxylation; about 40% of each isomer was converted to hydroxylated metabolites after 30 min incubation. However, there were differences between the isomers, l-norgestrel being converted mainly to the 16beta-hydroxysteroid and d-norgestrel to the 16alpha-hydroxysteroid. Similar amounts of both isomers were hydroxylated at C-6. The metabolism of the racemic mixture was intermediate between that of the d and l isomers.
The rates of metabolism of synthetic gestagens derived from 19-nortestosterone by rabbit liver tissue in vitro were compared. Over a period of 1 hr norethisterone was metabolized as rapidly as 19-nortestosterone whereas d-norgestrel and lynestrenol were metabolized at a slightly lower rate. Less than 5% of l-norgestrel was metabolized. In all cases the reaction product was the tetrahydrosteroid. Lynestrenol was metabolised through norethisterone. Skeletal muscle, lung and small intestine also metabolized norethisterone and d-norgestrel but at a slower rate than liver tissue. Small amounts of norethisterone were metabolized by adipose tissue but heart and spleen were inactive. Lynestrenol and l-norgestrel were not metabolized by any of the extra-hepatic tissues studied.
In vitro studies were conducted on the metabolism of 3 steroids used in OCs (oral contraceptives) by small pieces of human jejunal mucosa. This was done because the gastrointestinal mucosa of humans is known to metabolize a number of drugs. Almost 40% of the ethinyl estradiol, 9.8% of the levonorgestrel, and 7% of the mestranol were metabolized after incubation. All these metabolic responses were significantly different from those in the control groups. Results of the study show that the metabolism of the ethinyl estradiol was related to the weight of the tissue used. These results are consistent with the known marked 1st pass effect of ethinyl estradiol. Norgestrel, known to have little or no 1st pass effect, did not show a high rate of gut metabolism. Under the experimental conditions employed, no Phase 1 metabolism of either ethinyl estradiol or levonorgestrel was apparent.
Hepatic.
Route of Elimination: About 45% of levonorgestrel and its metabolites are excreted in the urine and about 32% are excreted in feces, mostly as glucuronide conjugates.
Biological Half-Life
(14)C-Norgestrel was administered to seven human subjects and 43% of dose was excreted in the urine within 5 days; the biological half-life of the radioactivity was 24 hr. ...
Toxicity/Toxicokinetics
Toxicity Summary
Binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progestins like levonorgestrel will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge.
Toxicity Data
LD50 >5000 mg/kg (orally in rats)
Interactions
The metabolism of estrogens and progestagens may be increased by concomitant use of substances known to induce drug-metabolising enzymes, specifically cytochrome P450 enzymes, such as anticonvulsants (eg phenobarbital, phenytoin, carbamazepine), and anti-infectives (eg rifampicin, rifabutin, nevirapine, efavirenz).
Ritonavir and nelfinavir, although known as strong inhibitors, by contrast exhibit inducing properties when used concomitantly with steroid hormones.
Herbal preparations containing St John's Wort (Hypericum Perforatum) may induce the metabolism of estrogens and progestagens.
Phenytoin and rifampin increase the serum concentrations of sex hormone-binding globulin (SHBG); this significantly decreases the serum concentration of free drug for some progestins, which is a special concern in patients using progestins for contraception. /Progestins/
Drug interaction data are not available for rifabutin, but because its structure is similar to that of rifampin, similar precautions with its use with progestins may be warranted. ... /Progestins/
Non-Human Toxicity Values
LD50 Rat oral 5010 mg/kg
LD50 Rat ip 11,200 mg/kg
LD50 Mouse ip 7300 mg/kg
LD50 Mouse oral 5010 mg/kg
References

[1]. Levonorgestrel inhibits proliferation and induces apoptosis in uterine leiomyoma cells. Contraception vol. 82,3 (2010): 301-8.

[2]. Levonorgestrel inhibits luteinizing hormone-stimulated progesterone production in rat luteal cells. The Journal of steroid biochemistry and molecular biology vol. 50,3-4 (1994): 161-6.

[3]. Effects of different nylestriol/levonorgestrel dosages on bone metabolism in female Sprague-Dawley rats with retinoic acid-induced osteoporosis. Endocrine research vol. 29,1 (2003): 23-42.

[4]. Anti-fertility effect of levonorgestrel and/or quinestrol on striped field mouse (Apodemus agrarius): evidence from both laboratory and field experiments. Integrative zoology vol. 17,6 (2022): 1041-1052.

[5]. Effects of oral and vaginal administration of levonorgestrel emergency contraception on markers of endometrial receptivity. Human reproduction (Oxford, England) vol. 25,4 (2010): 874-83.

Additional Infomation
Therapeutic Uses
Contraceptives, Oral, Synthetic; Progestational Hormones, Synthetic
Low-ogestrel (norgestrel and ethinyl estradiol tablets) is indicated for the prevention of pregnancy in women who elect to use this product as a method of contraception. /Included in US product label/
/Cyclo-Progynova is indicated as/ hormone replacement therapy (HRT) for estrogen deficiency symptoms in perimenopausal and postmenopausal women.
/Cyclo-Progynova is indicated for/ prevention of osteoporosis in postmenopausal women at high risk of future fractures who are intolerant of, or contraindicated for, other medicinal products approved for the prevention of osteoporosis.
Norgestrel ... /is/ indicated for the prevention of pregnancy. Progestin-only oral contraceptives are also called minipills and progestin-only oral pills (POPs). /Former/
Drug Warnings
Cigarette smoking increases the risk of serious cardiovascular side effects from oral contraceptive use. This risk increases with age and with heavy smoking (15 or more cigarettes per day) and is quite marked in women over 35 years of age. Women who use oral contraceptives should be strongly advised not to smoke.
The use of oral contraceptives is associated with increased risks of several serious conditions including myocardial infarction, thromboembolism, stroke, hepatic neoplasia, and gallbladder disease, although the risk of serious morbidity or mortality is very small in healthy women without underlying risk factors. The risk of morbidity and mortality increases significantly in the presence of other underlying risk factors such as hypertension, hyperlipidemias, hypercholesterolemia, obesity and diabetes.
Oral contraceptives should not be used in women who have the following conditions: thrombophlebitis or thromboembolic disorders; a past history of deep vein thrombophlebitis or thromboembolic disorders; cerebral vascular or coronary artery disease; Known or suspected carcinoma of the breast; carcinoma of the endometrium or other known or suspected estrogen-dependent neoplasia; undiagnosed abnormal genital bleeding; cholestatic jaundice of pregnancy or jaundice with prior pill use; hepatic adenomas, carcinomas or benign liver tumors; known or suspected pregnancy
The most frequent adverse effect of oral contraceptives is nausea. In addition, nausea has been reported in women using vaginal or transdermal estrogen-progestin contraceptives. The principal risk associated with currently recommended high-dose, postcoital estrogen-progestin combination regimens appears to be moderate to severe adverse GI effects including severe vomiting and nausea, which occur in 12-22 and 30-66%, respectively, of women receiving the short-course regimens and may limit compliance with, and effectiveness of, the regimens. In 2 prospective, randomized studies, nausea and vomiting were less common with a high-dose postcoital progestin-only regimen (0.75 mg levonorgestrel every 12 hours for 2 doses) than with a high-dose estrogen-progestin regimen (100 mcg ethinyl estradiol and 0.5 mg levonorgestrel every 12 hours for 2 doses). Other adverse GI effects include vomiting, abdominal cramps, abdominal pain, bloating, diarrhea, and constipation. Gingivitis and dry socket have also been reported. Changes in appetite and changes in weight also may occur. /Estrogen-Progestin Combination/
For more Drug Warnings (Complete) data for NORGESTREL (52 total), please visit the HSDB record page.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H28O2
Molecular Weight
312.45
Exact Mass
312.208
CAS #
797-63-7
Related CAS #
Dydrogesterone;152-62-5;Levonorgestrel-d8;Norgestrel-d6;2376035-98-0
PubChem CID
13109
Appearance
White to off-white solid powder
Density
1.1±0.1 g/cm3
Boiling Point
459.1±45.0 °C at 760 mmHg
Melting Point
206ºC
Flash Point
195.4±21.3 °C
Vapour Pressure
0.0±2.6 mmHg at 25°C
Index of Refraction
1.571
LogP
3.92
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
2
Heavy Atom Count
23
Complexity
609
Defined Atom Stereocenter Count
6
SMILES
CC[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@]2(C#C)O)CCC4=CC(=O)CC[C@H]34
InChi Key
WWYNJERNGUHSAO-XUDSTZEESA-N
InChi Code
InChI=1S/C21H28O2/c1-3-20-11-9-17-16-8-6-15(22)13-14(16)5-7-18(17)19(20)10-12-21(20,23)4-2/h2,13,16-19,23H,3,5-12H2,1H3/t16-,17+,18+,19-,20-,21-/m0/s1
Chemical Name
(8R,9S,10R,13S,14S,17R)-13-ethyl-17-ethynyl-17-hydroxy-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one
Synonyms
Levonorgestrel, Norgestrel, Microval, Postinor, Mirena, Plan B
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:45 mg/mL (144.0 mM)
Water:<1 mg/mL
Ethanol:2 mg/mL (6.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.00 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2005 mL 16.0026 mL 32.0051 mL
5 mM 0.6401 mL 3.2005 mL 6.4010 mL
10 mM 0.3201 mL 1.6003 mL 3.2005 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Pharmacologic Strategies to Use the Levonorgestrel Implant in HIV-infected Women
CTID: NCT02722421
Phase: Phase 2    Status: Completed
Date: 2024-10-03
Improving the Treatment for Women With Early Stage Cancer of the Uterus
CTID: NCT01686126
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-08-28
A Study of a Levonorgestrel-Releasing Intrauterine System for Long-Term, Reversible Contraception
CTID: NCT00995150
Phase: Phase 3    Status: Terminated
Date: 2024-08-14
A Research Study Looking Into the Effect of NNC0519-0130 on Blood Levels of a Birth Control Pill and Emptying of the Stomach in Women After Menopause
CTID: NCT06513104
Phase: Phase 1    Status: Recruiting
Date: 2024-08-07
Assessing the Efficacy and Acceptability of Two Missed Period Pills Regimens
CTID: NCT06492889
Phase: Phase 2/Phase 3    Status: Not yet recruiting
Date: 2024-07-18
View More

Piroxicam and Levonorgestrel Co-treatment for Emergency Contraception
CTID: NCT03614494
Phase: Phase 2/Phase 3    Status: Completed
Date: 2024-05-06


Kuwa Free! - Live Free!
CTID: NCT05044962
Phase: N/A    Status: Recruiting
Date: 2024-04-10
Weight-loss Drug for Fertility-Sparing Treatment of Atypical Hyperplasia and Grade 1 Cancer of the Endometrium
CTID: NCT06073184
Phase: Phase 2    Status: Not yet recruiting
Date: 2024-03-19
Oral Levonorgestrel Plus Meloxicam, IG-002 Delays Ovulation in Normal Menstruating Women by Seven Days
CTID: NCT05695352
Phase: Phase 2    Status: Recruiting
Date: 2024-03-12
Effects of St. John's Wort on the Oral Contraceptive Hormone Levonorgestrel
CTID: NCT00131885
Phase: Phase 4    Status: Completed
Date: 2023-11-13
Bay98-7196, Dose Finding / POC Study
CTID: NCT02203331
Phase: Phase 2    Status: Completed
Date: 2023-11-07
A Pharmacokinetic Evaluation of Levonorgestrel Implant and Antiretroviral Therapy
CTID: NCT01789879
Phase: Phase 2    Status: Completed
Date: 2023-09-01
Investigating the Interaction Between Two Long-acting Reversible Methods of Contraception and Dolutegravir, a Treatment for HIV
CTID: NCT04910711
Phase: Phase 4    Status: Active, not recruiting
Date: 2023-07-27
Levonorgestrel-Releasing Intrauterine System (LNG-IUS) in the Management of Atypical Endometrial Hyperplasia
CTID: NCT04897217
Phase: Phase 3    Status: Withdrawn
Date: 2023-07-05
LCS16 vs. COC User Satisfaction and Tolerability Study
CTID: NCT03074045
Phase: Phase 3    Status: Completed
Date: 2023-06-18
JAYDESS Drug Utilization Study in Sweden
CTID: NCT02349815
Phase:    Status: Completed
Date: 2023-01-31
A Pilot Study on Fertility Conservative Treatment of Atypical Endometrial Hyperplasia in Singapore
CTID: NCT05492487
Phase: Phase 2    Status: Unknown status
Date: 2022-08-08
Bioavailability of Levonorgestrel and Ethinyl Estradiol Tablets 15.0 mg/0.03 mg With Regards to Reference Product
CTID: NCT05282940
Phase: Phase 1    Status: Completed
Date: 2022-06-02
Adherence With Continuous-dose Oral Contraceptive: Evaluation of Self-Selection and Use
CTID: NCT04112095
Phase: Phase 3    Status: Completed
Date: 2022-05-20
Safety and Efficacy of CDB-2914 in Comparison to Levonorgestrel for Emergency Contraception
CTID: NCT00551616
Phase: Phase 3    Status: Completed
Date: 2022-05-03
A Study of Oral Contraception Under Simulated OTC Conditions
CTID: NCT03559010
Phase: Phase 3    Status: Terminated
Date: 2022-04-04
Pharmacokinetics Study to Evaluate Drug-Drug Interactions and Safety of Elpida® in Co-Administration With Other Drugs
CTID: NCT03709355
Phase: Phase 1    Status: Completed
Date: 2022-01-26
Pharmacokinetic Study to Evaluate Double-Dose Levonorgestrel Emergency Contraception in Combination With Efavirenz-Based Antiretroviral Therapy or Rifampicin-Containing Anti-Tuberculosis Therapy
CTID: NCT03819114
Phase: Phase 2    Status: Completed
Date: 2021-12-27
A Study on the Feasibility and Acceptability of Pericoital Levonorgestrel 1.5mg
CTID: NCT04058873
Phase:    Status: Completed
Date: 2021-11-05
Assessing Use Of Mifepristone After Progestin Priming For Use As 'Missed Period Pills'
CTID: NCT04676776
Phase: Phase 2    Status: Unknown status
Date: 2021-08-12
Effect of Norgestrel 75 mcg on Cervical Mucus and Ovarian Activity During Perfect Use, After One Delayed Intake and After a Missed Pill
CTID: NCT03585712
Phase: Phase 2    Status: Completed
Date: 2021-06-03
Safety and Contraceptive Efficacy of an Intravaginal Ring With LNG (Levonorgestrel) Over One Year in Healthy Women
CTID: NCT02403401
Phase: Phase 3    Status: Completed
Date: 2021-04-08
KYleena Satisfaction Study / Observational Study on User Satisfaction With the Levonorgestrel Intrauterine Delivery System Kyleena (LNG-IUS 12) in New Contraceptive Users and After Switching From Another Contraceptive Method
CTID: NCT03182140
Phase:    Status: Completed
Date: 2021-03-29
Comparison of Estrogen-progestin Therapy in Continuous Regimen Versus Combination Estrogen-progestin Therapy in Continuous Regimen Plus Levonorgestrel-releasing Intrauterine System (LNG-IUS)
CTID: NCT02556411
Phase: N/A    Status: Unknown status
Date: 2021-02-04
Adenomyosis: Genomic Mechanisms and Biological Response
CTID: NCT03428854
Phase:    Status: Withdrawn
Date: 2021-02-02
Levonorgestrel in Preventing Ovarian Cancer in Patients at High Risk for Ovarian Cancer
CTID: NCT00445887
Phase: Phase 2    Status: Completed
Date: 2019-11-19
PK Study of 90-Day Use of Vaginal Rings Containing Dapivirine and Levonorgestrel
CTID: NCT03467347
Phase: Phase 1    Status: Completed
Date: 2019-10-09
Study Comparing Emergency Contraception Effectiveness in Women Who Weight ≥ 80 kg
CTID: NCT03537768
Phase: Phase 4    Status: Unknown status
Date: 2019-10-08
The Evidence for Contraceptive Options and HIV Outcomes Trial
CTID: NCT02550067
Phase: N/A    Status: Completed
Date: 2019-08-20
Study of Spermatogenesis Suppression With DMAU Alone or With LNG Versus Placebo Alone in Normal Men
CTID: NCT03455075
Phase: Phase 2    Status: Unknown status
Date: 2019-08-12
Acceptability & Tolerance of Immediate Versus Delayed Postpartum Contraceptive Implant
CTID: NCT03353012
Phase: Phase 4    Status: Completed
Date: 2019-07-26
Comparison of the Levonorgestrel IUD and the Copper IUD Placed in the Immediate Postplacental Period: A Prospective Cohort Study
CTID: NCT02067663
Phase:    Status: Completed
Date: 2019-07-05
To Investigate the Pharmacological Effects, Drug Blood Levels and Safety of an Intrauterine System Releasing the Study Drug BAY1007626 in Comparison to Mirena and Jaydess in Healthy Young Women Treated for 90 Days to Determine the Drug Dose for Further Development
CTID: NCT02490774
Phase: Phase 2    Status: Terminated
Date: 2019-06-04
PK and Safety Study of Vaginal Rings Containing Dapivirine and Levonorgestrel
CTID: NCT02855346
Phase: Phase 1    Status: Completed
Date: 2018-05-22
Study to Evaluate Pharmacokinetics Profile, Wearability, and Safety of 2 Progestin-Only Patches
CTID: NCT01623466
Phase: Phase 1/Phase 2    Status: Completed
Date: 2018-01-23
A Cross-sectional, Observational Multicenter Study to Assess the Reasons for Choosing the 3-year Hormonal IUD and Level of IUDs Knowledge Among Women Aged 18 to 29 Years
CTID: NCT02903888
Phase:    Status: Completed
Date: 2018-01-12
A Study to Evaluate the Effect of Multiple Oral Doses of JNJ-42847922 on the Steady-state Pharmacokinetics of an Oral Contraceptive Containing Ethinyl Estradiol and Levonorgestrel in Healthy Female Adult Participants
CTID: NCT03249402
Phase: Phase 1    Status: Completed
Date: 2017-12-11
Trial Evaluating Folic Acid Supplementation by Concomitant Administration of Ethinyl Estradiol + Levonorgestrel
CTID: NCT03359057
Phase: Phase 3    Status: Completed
Date: 2017-12-04
Safety,Effectiveness and Acceptability of Sino-implant II in DR
CTID: NCT01594632
Phase: N/A    Status: Completed
Date: 2017-09-21
Advance Supply of Emergency Contraception Compared to Routine Postpartum Care in Teens
CTID: NCT00433004
Phase: Phase 4    Status: Completed
Date: 2017-09-15
Clinical Trial the Use of Levonorgestrel-releasing Intrauterine System Versus Etonogestrel Implant in Endometriosis
CTID: NCT02480647
Phase: Phase 4    Status: Completed
Date: 2017-08-14
An Observational Study to Assess Quality of Life and Satisfaction of Young Women (Aged 18-29) Following 6 (±1) Months Using Jaydess as Their Contraceptive Method
CTID: NCT02574715
Phase:    Status: Completed
Date: 2017-06-29
Effectiveness of Levonorgestrel-intrauterine System (LNG-IUS) Versus Depot Medroxyprogesterone Acetate (DMPA) in Treatment of Pelvic Pain in Clinically Diagnosed Endometriotic Patients
CTID: NCT02534688
Phase: Phase 4    Status: Completed
Date: 2017-03-17
Duration of Use of Highly Effective Reversible Contraception
CTID: NCT02414919
Phase:    Status: Completed
Date: 2017-03-16
The Copper T380A IUD vs. Oral Levonorgestrel for Emergency Contraception
CTID: NCT00966771
Phase:    Status: Completed
Date: 2017-02-06
Impact vs. Dienogest: A Combined Oral Contraceptive in the Size of Endometriomas
CTID: NCT02599077
Phase: Phase 2/Phase 3    Status: Suspended
Date: 2016-11-22
Mirena Observational Program
CTID: NCT00883662
Phase:    Status: Completed
Date: 2016-09-30
LCS12 vs. ENG Subdermal Implant (Nexplanon) Discontinuation Rate Study
CTID: NCT01397097
Phase: Phase 3    Status: Completed
Date: 2016-07-25
Evaluation of Ciclo 21® Effect (Levonorgestrel + Ethinyl Estradiol) Compared to Nordette®.
CTID: NCT01480778
Phase: Phase 3    Status: Completed
Date: 2016-03-03
Mirena and Estrogen for Control of Perimenopause Symptoms and Ovulation Suppression
CTID: NCT01613131
Phase: N/A    Status: Completed
Date: 2015-12-02
Non-interventional Study of Long-term Intrauterine Contraceptives Acceptability and User Satisfaction
CTID: NCT01590537
Phase:    Status: Completed
Date: 2015-10-16
Drug-drug Interaction of BI 201335 and Microgynon
CTID: NCT01570244
Phase: Phase 1    Status: Completed
Date: 2015-08-03
LCS12 Adolescent Study
CTID: NCT01434160
Phase: Phase 3    Status: Completed
Date: 2015-07-27
Study to Evaluate the Pharmacokinetics of an Oral Contraceptive Containing Levonorgestrel and Ethinyl Estradiol When Co-administered With GSK1265744 in Healthy Adult Female Subjects
CTID: NCT02159131
Phase: Phase 1    Status: Completed
Date: 2015-07-07
Mirena or Conventional
Immediate versus delayed insertion of intrauterine contraception at the time of medical abortion
CTID: null
Phase: Phase 3    Status: Trial now transitioned
Date: 2018-03-23
Immediate post partum LNG-IUS insertion or standard insertion procedure after childbirth
CTID: null
Phase: Phase 3    Status: Completed
Date: 2017-09-20
A prospective, randomized, parallel-group study to assess the effects on ovarian activity of ellaOne (ulipristal acetate 30 mg single dose) taken after three consecutive days of missed combined oral contraceptive pills
CTID: null
Phase: Phase 4    Status: Completed
Date: 2017-09-11
Ulipristal acetate versus conventional management of heavy menstrual bleeding (HMB; including uterine fibroids): a randomised controlled trial and exploration of mechanism of action (UCON trial)
CTID: null
Phase: Phase 3    Status: GB - no longer in EU/EEA
Date: 2016-08-26
COLIBRI STUDY, Cooper and Levonorgestrel Intrauterine Device (IUD) Barcelona Research Initiative.
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2016-02-25
A prospective, open-label, randomized, two-armed clinical trial to evaluate the efficacy and safety of a combination of ethinyl-estradiol and levonorgestrel versus a low-dose combination of pioglitazone + spironolactone + metformin in adolescents with ovarian hyperandrogenism and hyperinsulinemia: Effects on ovulatory function, parameters of chronic inflammation, treatment markers of pronostic and effectiveness and the development of type 2 diabetes
CTID: null
Phase: Phase 3    Status: Completed
Date: 2016-01-22
A Phase 3, randomized, active-comparator controlled clinical trial to study the contraceptive efficacy and safety of the MK-8342B (etonogestrel + 17β-estradiol) vaginal ring and the levonorgestrel-ethinylestradiol (LNG-EE) 150/30 µg combined oral contraceptive (COC) in healthy women 18 years of age and older, at risk for pregnancy.
CTID: null
Phase: Phase 3    Status: Prematurely Ended, Completed
Date: 2015-10-23
Scheduling of GnRH antagonist FIV-ICSI cycles with estrogen or contraceptive oral pills in previous luteal phase. Comparison of results against no treatment.
CTID: null
Phase: Phase 3    Status: Ongoing
Date: 2015-09-10
Multi-center, randomized, comparator-controlled, single-blind, parallel-group study to investigate the pharmacodynamics, pharmacokinetics and safety of an intrauterine system releasing BAY 1007626, as compared with Mirena and Jaydess, in a combined proof-of-concept and dose-finding study in healthy pre menopausal women treated for 90 days
CTID: null
Phase: Phase 2    Status: Prematurely Ended, Completed
Date: 2015-06-17
PROgesterone Therapy for Endometrial Cancer prevention in obese women (PROTEC)
CTID: null
Phase: Phase 2    Status: Completed
Date: 2015-05-07
A randomized, double-blind, double-dummy, parallel- group, multi-center phase IIb study to assess the efficacy and safety of different dose combinations of an aromatase inhibitor and a progestin in an intravaginal ring versus placebo and leuprorelin / leuprolide acetate in women with symptomatic endometriosis over a 12-week treatment period
CTID: null
Phase: Phase 2    Status: Completed
Date: 2014-09-02
PRE-EMPT: Preventing Recurrence of Endometriosis by Means of long acting Protestogen Therapy
CTID: null
Phase: Phase 4    Status: GB - no longer in EU/EEA
Date: 2013-09-11
A prospective, open-label, randomized, two-armed clinical trial to evaluate the efficacy and safety of a combination of ethinyl-estradiol and levonorgestrel versus a low-dose combination of pioglitazone + spironolactone + metformin in adolescents with ovarian hyperandrogenism and hyperinsulinemia: Effects on ovulatory function, parameters of chronic inflammation, on cardiovascular risk factors and on risk factors for the development of type 2 diabetes
CTID: null
Phase: Phase 3    Status: Completed
Date: 2012-12-20
A single centre open-label randomised controlled trial of long term pituitary down-regulation before in vitro fertilisation for women with endometriosis: a pilot study
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2012-12-07
A prospective, randomized, double-blind parallel-arm, placebo-controlled study to assess the effects on ovarian activity of a combined oral contraceptive pill when preceded by the intake of ellaOne® (ulipristal acetate 30 mg) or placebo
CTID: null
Phase: Phase 4    Status: Completed
Date: 2012-02-20
Multi-center, single-arm study to assess the safety, efficacy, discontinuation rate and pharmacokinetics of the low-dose levonorgestrel intrauterine contraceptive system (LCS12) in post-menarcheal female adolescents under 18 years of age for 1 year, and an optional 2-year extension phase
CTID: null
Phase: Phase 3    Status: Completed
Date: 2011-09-12
Multicenter, open-label, randomized, controlled parallel-group study to assess discontinuation rates, bleeding patterns, user satisfaction and adverse event profile of LCS12 in comparison to etonogestrel subdermal implant over 12 months of use in women 18 to 35 years of age
CTID: null
Phase: Phase 3    Status: Completed
Date: 2011-05-04
Multicenter, randomized, open-label, parallel-group study to evaluate user satisfaction with and tolerability of the low-dose levonorgestrel (LNG) intrauterine delivery system (IUS) with 12 µg LNG/day initial in vitro release rate (LCS12) in comparison to a combined oral contraceptive containing 30 µg ethinyl estradiol and 3 mg drospirenone (Yasmin®) in young nulliparous and parous women (18-29 years) over 18 months of use
CTID: null
Phase: Phase 3    Status: Completed
Date: 2011-01-13
Raskauden ehkäisyn vaikutukset kohdun ja munasarjojen verenkiertoon
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2010-09-21
A randomised, open-label, multi-centre, dose-finding study to evaluate cycle control of 15 mg or 20 mg estetrol combined with either 150 μg levonorgestrel or 3 mg drospirenone, compared to a combined oral contraceptive containing estradiol valerate and dienogest.
CTID: null
Phase: Phase 2    Status: Completed
Date: 2010-07-15
The thrombogenicity of the dienogest/estradiol valerate containing oral contraceptive (Qlaira)
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2010-04-14
A Randomized, Open-Label, Comparative, Multicenter Trial to Compare the Effects on Metabolic Parameters of Two NOMAC-E2 Batches (Pivotal Phase III and Commercial Batch) and a Monophasic COC Containing 150 μg LNG and 30 μg EE (Protocol No. P06447)
CTID: null
Phase: Phase 3    Status: Prematurely Ended
Date: 2010-02-03
Multi-center, double-blind, randomized study to investigate the impact of a sequential oral contraceptive containing estradiol valerate and dienogest (SH T00658ID) compared to a monophasic contraceptive containing ethinylestradiol and levonorgestrel (Microgynon) over 6 treatment cycles on alleviating complaints of reduced libido in women with acquired female sexual dysfunction (FSD) associated with oral contraceptive use
CTID: null
Phase: Phase 3    Status: Completed
Date: 2009-03-13
A prospective open randomised controlled trial of women diagnosed with premature ovarian failure (POF) to investigate the effects of active treatment with HRT (hormone replacement therapy) or COCP (combined oral contraceptive pill), and observation of patients who choose to have no treatment, on bone density, markers of cardiovascular disease, markers of bone metabolism, menopausal symptoms, quality of life, depression score, sexual function and ovarian function over 2 years.
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-03-03
A multicenter, randomized, double-blind, active-controlled, parallel group, 2-arm study to investigate the effect of estradiol valerate/dienogest compared to Microgynon on hormone withdrawal associated symptoms in otherwise healthy women after 6 cycles of treatment
CTID: null
Phase: Phase 3    Status: Completed
Date: 2008-12-10
INHIBIDORES DE LA AROMATASA (ANASTROZOL) ASOCIADOS A DISPOSITIVO INTRAUTERINO LIBERADOR DE LEVONORGESTREL (DIU-LNG) EN EL TRATAMIENTO DE LA ENDOMETRIOSIS MODERADA/SEVERA
CTID: null
Phase: Phase 3    Status: Ongoing
Date: 2008-11-10
Effectiveness and Cost-effectiveness of Levonorgestrel containing Intrauterine system in Primary care against Standard Treatment for menorrhagia
CTID: null
Phase: Phase 4    Status: Completed
Date: 2008-07-25
Effect of continuous versus cyclic dosing regimen of hormonal contraception on bleeding pattern, cardivascular risk marker, sexual function and satisfaction
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2008-04-16
' A Prospective, Randomized, Double Blind, Multicenter Study to Compare the Efficacy, Safety and Tolerability of CDB-2914 with Levonorgestrel as Emergency Contraception Within 120 Hours Unprotected Intercourse ” (Phase III).
CTID: null
Phase: Phase 3    Status: Completed
Date: 2007-11-15
Multi-center, open-label, randomized study to assess the safety and contraceptive efficacy of two doses (in vitro 12 µg/24 h and 16 µg/24 h) of the ultra low dose levonorgestrel contraceptive intrauterine systems (LCS) for a maximum of 3 years in women 18 to 35 years of age
CTID: null
Phase: Phase 3    Status: Completed
Date: 2007-08-08
A randomized, open-label, comparative, multi-center trial to evaluate the effects on hemostasis, lipids and carbohydrate metabolism, and on adrenal and thyroid function of a monophasic COC containing 2.5 mg NOMAC and 1.5 mg E2, compared to a monophasic COC containing 150 µg LNG and 30 µg EE
CTID: null
Phase: Phase 3    Status: Completed
Date: 2006-09-14
Multicenter study to investigate the bleeding profile and the insertion easiness in women inserted with a second consecutive MIRENA for contraception or menorrhagia
CTID: null
Phase: Phase 4    Status: Completed
Date: 2006-08-31
Prevention Of Endometrial Tumours (POET)
CTID: null
Phase: Phase 3    Status: Prematurely Ended
Date: 2006-06-05
A dose-finding randomized clinical trial to evaluate the differential impact of four progestins for their use as male contraceptives in healthy men.
CTID: null
Phase: Phase 1, Phase 2    Status: Completed
Date: 2005-11-09
A MULTICENTER, RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED STUDY OF A COMBINATION OF LEVONORGESTREL AND ETHINYL ESTRADIOL IN A CONTINUOUS DAILY REGIMEN IN SUBJECTS WITH PREMENSTRUAL DYSPHORIC DISORDER
CTID: null
Phase: Phase 3    Status: Completed
Date: 2005-10-21
Multi-center, open, randomized, dose finding phase II study to investigate for a maximum of three years ultra low dose levonorgestrel contraceptive intrauterine systems (LCS) releasing in vitro 12 µg/24 h and 16 µg/24 h of levonorgestrel compared to MIRENA in nulliparous and parous women in need of contraception
CTID: null
Phase: Phase 2    Status: Completed
Date: 2005-03-17

Contact Us