yingweiwo

L-692429

Alias: L-692429L-692,429 L 692429 L 692,429 L692,429 L692429.
Cat No.:V23559 Purity: ≥98%
L-692,429 is a new, potent nonpeptidyl growth hormone secretagogue (GHS) acting as an agonist of GHS with a Ki of 63 nM for binding to the GPCR.
L-692429
L-692429 Chemical Structure CAS No.: 145455-23-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of L-692429:

  • L-692429 HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

L-692,429 is a new, potent nonpeptidyl growth hormone secretagogue (GHS) acting as an agonist of GHS with a Ki of 63 nM for binding to the GPCR.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
With EC50 values of 26 nM, 47 nM, 60 nM, 63 nM, and 58 nM, respectively, L-692429 stimulates intracellular calcium release, inositol phosphate (IP) turnover, cAMP response element binding protein (CREB) activity, serum response element activity, and bioluminescence resonance energy transfer (BRET) activity[2]. L-692429 was applied to HeLa-T4 cells that were transiently expressing the epitope-tagged growth hormone secretagogue (GHS) receptor. Calcium release within cells is measured by a fluorometric technique employing the calcium indicator dye Fluo-3/AM. L-692429 treatment had no effect on untransfected HeLa-T4 cells, however it did boost the fluorescence emission of HeLa-T4 cells that were transiently expressing GHS receptors. Following L-692429 administration, luciferase activity dramatically increased, suggesting that GHS receptor activation activates the MAPK pathway [3].
ln Vivo
L-756867 demonstrated a dose-dependent inhibition of L-692429 (100 μg/kg)-stimulated GH production in Wistar rats under anesthesia. At an intravenous dosage of 100 μg/kg, L-756867 showed complete inhibition [1].
References

[1]. Inhibition of L-692,429-stimulated rat growth hormone release by a weak substance P antagonist: L-756,867. J Endocrinol. 1997 Jan;152(1):155-8.

[2]. Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling. Mol Endocrinol. 2005 Sep;19(9):2400-11.

[3]. Ghrelin and growth hormone (GH) secretagogues potentiate GH-releasing hormone (GHRH)-induced cyclic adenosine 3',5'-monophosphate production in cells expressing transfected GHRH and GH secretagogue receptors. Endocrinology. 2002 Dec;143(1.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H31N7O2
Molecular Weight
509.6021
Exact Mass
509.254
CAS #
145455-23-8
Related CAS #
169188-19-6 (HCl);145455-23-8;145455-80-7 (TFA);
PubChem CID
121879
Appearance
White to off-white solid powder
Density
1.33g/cm3
Index of Refraction
1.678
LogP
5.23
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
7
Heavy Atom Count
38
Complexity
815
Defined Atom Stereocenter Count
1
SMILES
CC(C)(CC(=O)N[C@@H]1CCC2=CC=CC=C2N(C1=O)CC3=CC=C(C=C3)C4=CC=CC=C4C5=NNN=N5)N
InChi Key
SBJLJOFPWOYATP-XMMPIXPASA-N
InChi Code
InChI=1S/C29H31N7O2/c1-29(2,30)17-26(37)31-24-16-15-21-7-3-6-10-25(21)36(28(24)38)18-19-11-13-20(14-12-19)22-8-4-5-9-23(22)27-32-34-35-33-27/h3-14,24H,15-18,30H2,1-2H3,(H,31,37)(H,32,33,34,35)/t24-/m1/s1
Chemical Name
3-amino-3-methyl-N-[(3R)-2-oxo-1-[[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]methyl]-4,5-dihydro-3H-1-benzazepin-3-yl]butanamide
Synonyms
L-692429L-692,429 L 692429 L 692,429 L692,429 L692429.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~98.12 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.91 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.91 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.91 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9623 mL 9.8116 mL 19.6232 mL
5 mM 0.3925 mL 1.9623 mL 3.9246 mL
10 mM 0.1962 mL 0.9812 mL 1.9623 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us