yingweiwo

KP496

Cat No.:V31585 Purity: ≥98%
KP49 is a selective dual antagonist of Leukotriene D4 and Thromboxane A2 receptors.
KP496
KP496 Chemical Structure CAS No.: 217799-03-6
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
KP49 is a selective dual antagonist of Leukotriene D4 and Thromboxane A2 receptors.
Biological Activity I Assay Protocols (From Reference)
ln Vivo
Both acute (day 7) and chronic (day 21) lung inflammation were markedly reduced by KP496. KP496 decreased the amount of neutrophils, eosinophils, macrophages, and lymphocytes on days 7 and 21, as well as on day 7. Prednisolone and KP496 both strongly reduced the rise in the amount of hydroxy-L-proline in the lungs. KP496 and prednisolone decreased the increase in hydroxy-L-proline content by almost 74% and 63%, respectively, when compared to their respective vehicle control groups [1]. The KP496 (100 mg/head) and prednisolone (10 mg/kg) groups considerably reduced the amount of infiltrating lymphocytes, monocytes/macrophages, eosinophils, and total cells when compared to the control group. impact. All cell types except neutrophils had less infiltration in the KP496 (30 mg/head) group, though not to a statistically significant extent [2].
References

[1]. Effect of inhaled KP-496, a novel dual antagonist of the cysteinyl leukotriene and thromboxane A2 receptors, on a bleomycin-induced pulmonary fibrosis model in mice. Pulm Pharmacol Ther. 2010 Oct;23(5):425-31.

[2]. Effects of KP-496, a novel dual antagonist for cysteinyl leukotriene receptor 1 and thromboxane A2 receptor, on Sephadex-induced airway inflammation in rats. Biol Pharm Bull. 2009 Jun;32(6):1057-61.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C31H34CLN3O7S3
Molecular Weight
692.265563488007
Exact Mass
691.124
CAS #
217799-03-6
PubChem CID
11578433
Appearance
White to off-white solid powder
LogP
5.8
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
16
Heavy Atom Count
45
Complexity
1140
Defined Atom Stereocenter Count
0
SMILES
O=C(O)C1=CC=CC=C1S(=O)(N(CCCCNS(=O)(C2=CC=C(Cl)C=C2)=O)CC3=CC=CC(OCC4=NC(C(C)C)=CS4)=C3)=O
InChi Key
WMMCMKVGDPXYQS-UHFFFAOYSA-N
InChi Code
InChI=1S/C31H34ClN3O7S3/c1-22(2)28-21-43-30(34-28)20-42-25-9-7-8-23(18-25)19-35(45(40,41)29-11-4-3-10-27(29)31(36)37)17-6-5-16-33-44(38,39)26-14-12-24(32)13-15-26/h3-4,7-15,18,21-22,33H,5-6,16-17,19-20H2,1-2H3,(H,36,37)
Chemical Name
2-[4-[(4-chlorophenyl)sulfonylamino]butyl-[[3-[(4-propan-2-yl-1,3-thiazol-2-yl)methoxy]phenyl]methyl]sulfamoyl]benzoic acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~144.45 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.61 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4445 mL 7.2226 mL 14.4452 mL
5 mM 0.2889 mL 1.4445 mL 2.8890 mL
10 mM 0.1445 mL 0.7223 mL 1.4445 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us