yingweiwo

JNJ-47965567

Alias: JNJ-47965567; JNJ 47965567; JNJ47965567.
Cat No.:V2118 Purity: ≥98%
JNJ-47965567 is a novel, potent,centrally permeable, high affinity and selective antagonist of the purinergic receptor P2X subtype 7 (P2X7), which is a ligand-gated ion channel.
JNJ-47965567
JNJ-47965567 Chemical Structure CAS No.: 1428327-31-4
Product category: Others 8
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

JNJ-47965567 is a novel, potent, centrally permeable, high affinity and selective antagonist of the purinergic receptor P2X subtype 7 (P2X7), which is a ligand-gated ion channel. An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL(-1) (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg(-1) ) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
High affinity for human and transporter P2X7 is demonstrated by JNJ-47965567 in 1321N1 cell membrane preparations [1]. When treated with LPS and BZ-ATP, JNJ-47965567 relaxes the release of IL-1β; the pIC50s are 6.7±0.07 (human blood) and 7.5±0.07 (blood sample), respectively. Under the same conditions, JNJ-47965567 does not prevent the release of IL-6 and TNF-α. (statistical small cells) and 7.1±0.1 (human monocytes) [1]. 】.
ln Vivo
JNJ-47965567 (30-100 mg/kg; sc) fragments the release of IL-1β caused by Bz-ATP [1]. JNJ-47965567 (30 mg/kg) links neuropathic pain models and isolates amphetamine-induced hyperactivity.
Animal Protocol
Animal/Disease Models: Male Sprague Dawley rat [1]
Doses: 30 mg/kg, 100 mg/kg
Route of Administration: subcutaneous injection ; shows habitual but significant efficacy [1]. Results 30 minutes before Bz-ATP infusion: The 100 mg/kg dose group Dramatically attenuated IL-1β release, while the 30 mg/kg dose group had no effect.
References

[1]. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol. 2013 Oct;170(3):624-40.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H32N4O2S
Molecular Weight
488.644285202026
Exact Mass
488.224
CAS #
1428327-31-4
PubChem CID
66553218
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
690.1±55.0 °C at 760 mmHg
Flash Point
371.2±31.5 °C
Vapour Pressure
0.0±2.2 mmHg at 25°C
Index of Refraction
1.670
LogP
6.5
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
7
Heavy Atom Count
35
Complexity
653
Defined Atom Stereocenter Count
0
InChi Key
XREFXUCWSYMIOG-UHFFFAOYSA-N
InChi Code
InChI=1S/C28H32N4O2S/c33-26(25-12-7-15-29-27(25)35-24-10-5-2-6-11-24)30-22-28(13-20-34-21-14-28)32-18-16-31(17-19-32)23-8-3-1-4-9-23/h1-12,15H,13-14,16-22H2,(H,30,33)
Chemical Name
N-[[4-(4-phenylpiperazin-1-yl)oxan-4-yl]methyl]-2-phenylsulfanylpyridine-3-carboxamide
Synonyms
JNJ-47965567; JNJ 47965567; JNJ47965567.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~204.65 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.12 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.12 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0465 mL 10.2325 mL 20.4650 mL
5 mM 0.4093 mL 2.0465 mL 4.0930 mL
10 mM 0.2046 mL 1.0232 mL 2.0465 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • JNJ-47965567


    Displacement of [3H] A-804598 byJNJ-47965567, A-804598, A-438079 and AZ-10606120 in membrane preparations of 1321N1 cells expressing either the recombinant human (upper panel) or rat (lower panel) isoform.

  • JNJ-47965567


    Attenuation of IL-1β release in human blood and human monocytes (PBMC) byJNJ-47965567.2013 Oct;170(3):624-40.

  • JNJ-47965567


    Effect of P2X7 antagonists on net IL-1β release in primary cultures of rat microglia (upper panel) or on calcium flux in rat astrocytes (lower panel).2013 Oct;170(3):624-40.

Contact Us