Size | Price | |
---|---|---|
Other Sizes |
ln Vitro |
Many Gram-positive and Gram-negative bacteria, such as Salmonella type B, Bacillus licheniformis, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, are susceptible to isoeugenol's antibacterial action[1].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Following a single oral dose of (14)C-isoeugenol (156 mg/kg, 50 uCi/kg), greater than 85% of the administered dose was excreted in the urine predominantly as sulfate or glucuronide metabolites by 72 hr. Approximately 10% was recovered in the feces, and less than 0.1% was recovered as CO(2) or expired organics. No parent isoeugenol was detected in the blood at any of the time points analyzed. Following iv administration (15.6 mg/kg, 100 uCi/kg), isoeugenol disappeared rapidly from the blood. The half life was 12 min and the Cl(s) was 1.9 L/min/kg. Excretion characteristics were similar to those of oral administration. The total amount of radioactivity remaining in selected tissues by 72 hr was less than 0.25% of the dose following either oral or intravenous administration. Results of these studies show that isoeugenol is rapidly metabolized and is excreted predominantly in the urine as phase II conjugates of the parent compound. Metabolism / Metabolites Following a single oral dose of (14)C-isoeugenol (156 mg/kg, 50 uCi/kg), greater than 85% of the administered dose was excreted in the urine predominantly as sulfate or glucuronide metabolites by 72 hr. Approximately 10% was recovered in the feces, and less than 0.1% was recovered as CO(2) or expired organics. No parent isoeugenol was detected in the blood at any of the time points analyzed. Following iv administration (15.6 mg/kg, 100 uCi/kg), isoeugenol disappeared rapidly from the blood. The half life was 12 min and the Cl(s) was 1.9 L/min/kg. Excretion characteristics were similar to those of oral administration. The total amount of radioactivity remaining in selected tissues by 72 hr was less than 0.25% of the dose following either oral or intravenous administration. Results of these studies show that isoeugenol is rapidly metabolized and is excreted predominantly in the urine as phase II conjugates of the parent compound. Trans-isoeugenol has known human metabolites that include trans-Isoeugenol-O-glucuronide. Biological Half-Life Following iv administration (15.6 mg/kg, 100 uCi/kg) /of/ isoeugenol ... the half life was 12 min ... . |
Toxicity/Toxicokinetics |
Non-Human Toxicity Values
LD50 Rat oral 1560 mg/kg LD50 Guinea pig oral 1410 mg/kg |
References | |
Additional Infomation |
Isoeugenol is a pale yellow oily liquid with a spice-clove odor. Freezes at 14 °F. Density 1.08 g / cm3. Occurs in ylang-ylang oil and other essential oils.
Isoeugenol is a phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It has a role as an allergen and a sensitiser. It is a phenylpropanoid and an alkenylbenzene. It is functionally related to a guaiacol. Isoeugenol is a commonly used fragrance added to many commercially available products, and occurs naturally in the essential oils of plants such as ylang-ylang. It is also a significant dermatologic sensitizer and allergen, and as a result has been restricted to 200 p.p.m. since 1998 according to guidelines issued by the fragrance industry. Allergic reactivity to Isoeugenol may be identified with a patch test. Isoeugenol has been reported in Perilla frutescens, Mandragora autumnalis, and other organisms with data available. Isoeugenol is is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil and cinnamon. It is very slightly soluble in water and soluble in organic solvents. It has a spicy odor and taste of clove. Isoeugenol is prepared from eugenol by heating. Eugenol is used in perfumeries, flavorings, essential oils and in medicine (local antiseptic and analgesic). It is used in the production of isoeugenol for the manufacture of vanillin. Eugenol derivatives or methoxyphenol derivatives in wider classification are used in perfumery and flavoring. They are used in formulating insect attractants and UV absorbers, analgesics, biocides and antiseptics. They are also used in manufacturing stabilizers and antioxidants for plastics and rubbers. Isoeugenol is used in manufacturing perfumeries, flavorings, essential oils (odor description: Clove, spicy, sweet, woody) and in medicine (local antiseptic and analgesic) as well as vanillin. (A7915). E-4-Propenyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: cis-Isoeugenol (annotation moved to). Drug Indication Isoeugenol is approved by the FDA for use within allergenic epicutaneous patch tests which are indicated for use as an aid in the diagnosis of allergic contact dermatitis (ACD) in persons 6 years of age and older. Mechanism of Action /The investigators/ previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). .. The present study ... investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 ug/mL (0.61 mM) for isoeugenol, 100 ug/mL (0.58 mM) for DEM, 3 ug/mL (14.8 uM) for DNCB, and 250 ug/mL (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release. Isoeugenol and its structural analog eugenol suppressed the lymphoproliferative response to concanavalin A stimulation in B6C3F1 mouse splenocyte cultures. Isoeugenol inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced IL-2 mRNA expression and protein secretion in B6C3F1 mouse splenocytes, and in EL4.IL-2 mouse T-cells, as determined by real-time RT-PCR and ELISA, respectively. To further characterize the inhibitory mechanism of isoeugenol at the transcriptional level, ... the DNA binding activity of the transcription factors for IL-2 using an electrophoretic mobility shift assay /was examined/. Isoeugenol decreased the binding activity of NF-AT and NF-kappaB in PMA/Io-stimulated EL4.IL-2 cells, but no significant effect was observed for AP-1 or Oct binding activity. Western blot analysis showed that isoeugenol also decreased the nuclear translocation of cytoplasmic NF-AT and NF-kappaB. These results suggest that isoeugenol suppresses IL-2 production through a decrease of IL-2 mRNA expression and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT and NF-kappaB. The phenolic derivatives eugenol and isoeugenol, which are naturally found in essential oils of different spices, are commonly used as fragrances. Recently data demonstrated that growth suppression produced by these substances occurs in keratinocytes and that the effects may be mediated via aryl hydrocarbon receptor (AhR) interactions. In this study the effects of eugenol and isoeugenol were determined on intracellular localization of AhR, AhR target gene expression, AhR-dependent cell cycle regulation, and proliferation in HaCaT cells. Both compounds produced a rapid and marked translocation of AhR into the nucleus, induced the expression of the AhR target genes cytochrome P-450 1A1 (CYP1A1) and AhR repressor (AhRR), and inhibited proliferation of HaCaT cells. Among the G(1) phase cell cycle-related proteins, levels of the retinoblastoma protein (RB), which is known to interact with AhR, and levels of the cyclin dependent kinase (CDK) 6 were reduced by eugenol and isoeugenol, whereas steady-state levels of CDK2 and CDK4 remained unaffected. Protein levels of CDK inhibitor (CKI) p27(KIP1), known to be modulated in an AhR-dependent manner, were increased after treatment with both substances. In conclusion, data show that the antiproliferative properties of eugenol and isoeugenol in HaCaT cells are mediated through AhR ... . Effects of eugenol compounds on the production of nitric oxide (NO) in RAW264.7 macrophages were analyzed in relation to the anti-inflammatory action of these compounds. Eugenol and isoeugenol inhibited lipopolysaccharide (LPS)-dependent production of NO, which was due to the inhibition of protein synthesis of inducible nitric oxide synthase (iNOS). Isoeugenol showed the most effective inhibitory effect and eugenol was less effective. LPS-dependent expression of cyclooxygenase-2 (COX-2) protein was also inhibited markedly by isoeugenol, and less effectively by eugenol. Anti-inflammatory action of eugenol compounds may be explained by the inhibition of NO production and COX-2 expression, the pro-inflammatory mediators. For more Mechanism of Action (Complete) data for Isoeugenol (8 total), please visit the HSDB record page. |
Molecular Formula |
C10H12O2
|
---|---|
Molecular Weight |
164.2011
|
Exact Mass |
164.083
|
CAS # |
97-54-1
|
Related CAS # |
63661-65-4 (sodium salt)
|
PubChem CID |
853433
|
Appearance |
Colorless to light yellow liquid
|
Density |
1.1±0.1 g/cm3
|
Boiling Point |
266.6±20.0 °C at 760 mmHg
|
Melting Point |
-10 °C
|
Flash Point |
122.9±6.7 °C
|
Vapour Pressure |
0.0±0.6 mmHg at 25°C
|
Index of Refraction |
1.578
|
LogP |
2.45
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
12
|
Complexity |
154
|
Defined Atom Stereocenter Count |
0
|
SMILES |
OC1C(OC)=CC(C=CC)=CC=1
|
InChi Key |
BJIOGJUNALELMI-ONEGZZNKSA-N
|
InChi Code |
InChI=1S/C10H12O2/c1-3-4-8-5-6-9(11)10(7-8)12-2/h3-7,11H,1-2H3/b4-3+
|
Chemical Name |
2-methoxy-4-[(E)-prop-1-enyl]phenol
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~609.01 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (15.23 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (15.23 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (15.23 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 6.0901 mL | 30.4507 mL | 60.9013 mL | |
5 mM | 1.2180 mL | 6.0901 mL | 12.1803 mL | |
10 mM | 0.6090 mL | 3.0451 mL | 6.0901 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.