yingweiwo

ISA-2011B

Alias: ISA-2011B ISA 2011B ISA2011B
Cat No.:V22667 Purity: ≥98%
ISA-2011B is an inhibitor (blocker/antagonist) of PIP5K1α and has anti-cancer activity.
ISA-2011B
ISA-2011B Chemical Structure CAS No.: 1395347-24-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
ISA-2011B is an inhibitor (blocker/antagonist) of PIP5K1α and has anti-cancer activity.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Compared with the vehicle-treated control, the proliferation rates of PC-3 cells were considerably reduced to 58.77%, 48.65%, and 21.62%, respectively, after treatment with 10, 20, and 50 μM ISA-2011B. ISA-2011B has the highest binding affinity for PIP5K1α and MAP/microtubule affinity-regulated kinases 1 and 4 (MARK1 and MARK4) among 460 kinases. ISA-2011B treatment suppressed 78.6% of PIP5K1α expression in PC-3 cells [1]. ISA-2011B induced a considerable decrease of AR-V7 and CDK1 in the nucleus and cytoplasm of 22Rv1 cells. ISA-2011B therapy also reduces AR expression in the nucleus without diminishing cytoplasmic AR[2].
ln Vivo
ISA-2011B effectively reduces the growth of tumor cells in xenograft mice and is mediated by inhibiting PIP5K1α-related PI3K/AKT and its downstream survival, proliferation and invasion pathways [1]. Overexpression of AR-V7 raises PIP5K1α and promotes rapid PCa growth in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B decreases the growth and invasiveness of xenograft tumors overexpressing AR-V7. ISA-2011B inhibits the PIP5K1α-dependent protein stability of AR-V7, consequently decreasing the invasive growth of AR-V7-high tumors in xenograft mice [2].
References

[1]. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3689-98.

[2]. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes MDV3100 resistance in prostate cancer cells. Oncotarget. 2016 Sep 27;7(39):63065-63081.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H18CLN3O4
Molecular Weight
423.85
Exact Mass
423.098
CAS #
1395347-24-6
PubChem CID
49853637
Appearance
White to off-white solid powder
Density
1.6±0.1 g/cm3
Boiling Point
714.9±60.0 °C at 760 mmHg
Flash Point
386.1±32.9 °C
Vapour Pressure
0.0±2.3 mmHg at 25°C
Index of Refraction
1.762
LogP
2.23
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
1
Heavy Atom Count
30
Complexity
737
Defined Atom Stereocenter Count
2
SMILES
CN1CC(=O)N2[C@H](C1=O)CC3=CC4=C(C=C3[C@H]2C5=CNC6=C5C=C(C=C6)Cl)OCO4
InChi Key
FSEZESVJDPKRDS-UWJYYQICSA-N
InChi Code
InChI=1S/C22H18ClN3O4/c1-25-9-20(27)26-17(22(25)28)4-11-5-18-19(30-10-29-18)7-13(11)21(26)15-8-24-16-3-2-12(23)6-14(15)16/h2-3,5-8,17,21,24H,4,9-10H2,1H3/t17-,21-/m0/s1
Chemical Name
(2S,8S)-2-(5-chloro-1H-indol-3-yl)-6-methyl-13,15-dioxa-3,6-diazatetracyclo[8.7.0.03,8.012,16]heptadeca-1(17),10,12(16)-triene-4,7-dione
Synonyms
ISA-2011B ISA 2011B ISA2011B
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~235.93 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.90 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.90 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.90 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 4 mg/mL (9.44 mM) in 0.5% CMC-Na/saline water (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3593 mL 11.7966 mL 23.5933 mL
5 mM 0.4719 mL 2.3593 mL 4.7187 mL
10 mM 0.2359 mL 1.1797 mL 2.3593 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us