yingweiwo

GW779439X

Cat No.:V20071 Purity: ≥98%
GW779439X, a pyrazolopyridine compound, is an inhibitor (blocker/antagonist) of Staphylococcus aureus PASTKinase Stk1.
GW779439X
GW779439X Chemical Structure CAS No.: 551919-98-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
GW779439X, a pyrazolopyridine compound, is an inhibitor (blocker/antagonist) of Staphylococcus aureus PASTKinase Stk1. GW779439X enhances the effectiveness of β-lactam antibiotics against a variety of MRSA and MSSA isolates, and some even cross the breakpoint from resistance to sensitivity. GW779439X is an AURKA inhibitor that causes apoptosis through caspases 3/7.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Biochemical factor Stk1 (GW779439X, 2 μM). Ceftaroline's efficacy against MRSA strains resistant to ceftaroline is boosted by GW779439X (5 μM). Oxacillin's efficacy against a range of isolates of Staphylococcus aureus, including MRSA and MSSA isolates, is boosted by GW779439X. GW779439X inhibits the growth of the AGP-01 cell line (IC50 = 0.57 μM). PBP2A-containing solutions exhibit the strongest enhancement effect of GW779439X (1 μM), which significantly fluctuates the G0/G1 phase and sub-G1 [1]. Genes associated with proliferation progression (c-MYC, NRAS, and CDC25A) exhibit significantly lower expression levels when exposed to 1 μM of GW779439X for 72 hours in AGP-01 cells. Conversely, genes associated with cell cycle arrest (TP53 and CDKN1A) exhibit significantly higher expression levels [2].
References

[1]. Kinase inhibitor screening reveals aurora-a kinase is a potential therapeutic and prognostic biomarker of gastric cancer [published online ahead of print, 2021 Jun 23]. J Cell Biochem. 2021;10.1002/jcb.30015.

[2]. GW779439X and Its Pyrazolopyridazine Derivatives Inhibit the Serine/Threonine Kinase Stk1 and Act As Antibiotic Adjuvants against β-Lactam-Resistant Staphylococcus aureus. ACS Infect Dis. 2018;4(10):1508-1518.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H21F3N8
Molecular Weight
454.450953245163
Exact Mass
454.184
CAS #
551919-98-3
PubChem CID
10173796
Appearance
White to light brown solid powder
Density
1.5±0.1 g/cm3
Index of Refraction
1.680
LogP
4.03
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
4
Heavy Atom Count
33
Complexity
644
Defined Atom Stereocenter Count
0
InChi Key
ZOTNSCLLJKXGSD-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H21F3N8/c1-31-9-11-32(12-10-31)20-5-4-15(13-17(20)22(23,24)25)29-21-26-8-6-18(30-21)16-14-28-33-19(16)3-2-7-27-33/h2-8,13-14H,9-12H2,1H3,(H,26,29,30)
Chemical Name
N-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~31.25 mg/mL (~68.76 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.58 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2005 mL 11.0023 mL 22.0046 mL
5 mM 0.4401 mL 2.2005 mL 4.4009 mL
10 mM 0.2200 mL 1.1002 mL 2.2005 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us