Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Glufosfamide (D-19575; glucophosphamide; D-glucose isophosphoramide mustard) is a novel and potent cytotoxic chemotherapeutic agent acting as a DNA alkylator. It is generated by the active metabolite of isophosphoramide mustard glycosidically linked to β-D-glucose.
ADME/Pharmacokinetics |
Biological Half-Life
... /A study was conducted/ to determine the maximum tolerated dose (MTD)... and the pharmacokinetics of 6 hr infusion of glufosfamide ... a novel alkylating agent with the potential to target the glucose transporter system. Twenty-one patients (10 women, 11 men; median age 56 yr) with refractory solid tumors were treated with doses ranging from 800 to 6,000 mg/sq m. /The drug/ was admin very three weeks as a two step (fast/slow) iv infusion over a 6 hr period. All patients went under pharmacokinetic sampling at the first course. The MTD was 6,000 mg/sq m. ... Pharmacokinetics indicated linearity of the area the time-versus-concentration curve against dose over the dose range studied and a short elimination half life. ... |
---|---|
References | |
Additional Infomation |
Glufosfamide is a compound consisting of the mustard agent ifosforamide conjugated to glucose, with potential alkylating activity. Glufosfamide is cleaved by glucosidases in tumor cells and forms ifosforamide. In turn, ifosforamide alkylates and forms DNA crosslinks, thereby inhibiting DNA replication and subsequent cell growth. The glucose moiety may enhance this agent's uptake by tumor cells.
Drug Indication Investigated for use/treatment in pancreatic cancer, solid tumors, breast cancer, colorectal cancer, brain cancer, lung cancer, ovarian cancer, and sarcoma. Mechanism of Action Beta-D-glucosyl-ifosfamide mustard (D 19575, glc-IPM, INN = glufosfamide) is a new agent for cancer chemotherapy. Its mode of action, which is only partly understood, was investigated at the DNA level. In the breast carcinoma cell line MCF7 glufosfamide inhibited both the synthesis of DNA and protein in a dose-dependent manner, as shown by the decreased incorporation of (3)H-methyl-thymidine into DNA and (14)C-methionine into protein of these cells. Treatment of MCF7 cells with 50 microM glufosfamide was sufficient to trigger poly(ADP-ribose) polymerase (PARP) activation, as revealed by immunofluorescence analysis. Both CHO-9 cells, which are O6-methylguanine-DNA methyltransferase (MGMT)-deficient, and an isogenic derivative, which has a high level of MGMT, showed the same cytotoxic response to beta-D-glc-IPM, indicating that the O6 position of guanine is not the critical target for cytotoxicity. By contrast, a sharp decrease in survival of cross-link repair deficient CL-V5 B cells was observed already at concentrations of 0.1 mM beta-D-glc-IPM, whereas the wild-type V79 cells showed a 90% reduction in survival only after treatment with 0.5 mM of this compound. The therapeutically inactive beta-L-enantiomer of glufosfamide also showed genotoxic effects in the same assays but at much higher doses. This was probably due to small amounts of ifosfamide mustard formed under the conditions of incubation. The results indicate that the DNA crosslinks are the most critical cytotoxic lesions induced by beta-D-glc-IPM. Therapeutic Uses ... To determine the maximum-tolerated dose (MTD), the principal toxicities, and the pharmacokinetics of 6-hour infusion of glufosfamide (beta-D-glucosylisophosphoramide mustard; D-19575), a novel alkylating agent with the potential to target the glucose transporter system. ... Twenty-one patients (10 women and 11 men; median age, 56 years) with refractory solid tumors were treated with doses ranging from 800 to 6,000 mg/m(2). Glufosfamide was administered every 3 weeks as a two-step (fast/slow) intravenous infusion over a 6-hour period. All patients underwent pharmacokinetic sampling at the first course. ... The MTD was 6,000 mg/m(2). At this dose, two of six patients developed a reversible, dose-limiting renal tubular acidosis and a slight increase in serum creatinine the week after the second and third courses of treatment, respectively, whereas three of six patients experienced short-lived grade 4 neutropenia/leukopenia. Other side effects were generally mild. Pharmacokinetics indicated linearity of area under the time-versus-concentration curve against dose over the dose range studied and a short elimination half-life. There was clear evidence of antitumor activity, with a long-lasting complete response of an advanced pancreatic adenocarcinoma and minor tumor shrinkage of two refractory colon carcinomas and one heavily pretreated breast cancer. ... The principal toxicity of 6-hour infusion of glufosfamide is reversible renal tubular acidosis, the MTD is 6,000 mg/m(2), and the recommended phase II dose is 4, 500 mg/m(2). Close monitoring of serum potassium and creatinine levels is suggested for patients receiving glufosfamide for early detection of possible renal toxicity. Evidence of antitumor activity in resistant carcinomas warrants further clinical exploration of glufosfamide in phase II studies. |
Molecular Formula |
C10H21CL2N2O7P
|
---|---|
Molecular Weight |
383.16
|
Exact Mass |
382.046
|
CAS # |
132682-98-5
|
PubChem CID |
123628
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.6±0.1 g/cm3
|
Boiling Point |
569.9±60.0 °C at 760 mmHg
|
Flash Point |
298.5±32.9 °C
|
Vapour Pressure |
0.0±3.6 mmHg at 25°C
|
Index of Refraction |
1.563
|
LogP |
-1.07
|
Hydrogen Bond Donor Count |
6
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
22
|
Complexity |
369
|
Defined Atom Stereocenter Count |
5
|
SMILES |
O[C@@H]1[C@@H](O)[C@H](OP(NCCCl)(NCCCl)=O)O[C@H](CO)[C@H]1O
|
InChi Key |
PSVUJBVBCOISSP-SPFKKGSWSA-N
|
InChi Code |
InChI=1S/C10H21Cl2N2O7P/c11-1-3-13-22(19,14-4-2-12)21-10-9(18)8(17)7(16)6(5-15)20-10/h6-10,15-18H,1-5H2,(H2,13,14,19)/t6-,7-,8+,9-,10+/m1/s1
|
Chemical Name |
(2S,3R,4S,5S,6R)-2-bis(2-chloroethylamino)phosphoryloxy-6-(hydroxymethyl)oxane-3,4,5-triol
|
Synonyms |
D 19575 D-19575 D19575
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~125 mg/mL (~326.23 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 50 mg/mL (130.49 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
 (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6099 mL | 13.0494 mL | 26.0988 mL | |
5 mM | 0.5220 mL | 2.6099 mL | 5.2198 mL | |
10 mM | 0.2610 mL | 1.3049 mL | 2.6099 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.