yingweiwo

Glaucocalyxin B

Cat No.:V29242 Purity: ≥98%
Glaucocalyxin B is an enantio-kaurane diterpene extracted from the traditional Chinese medicine Herbaceae and has anti-cancer and anti~inflammatory activities.
Glaucocalyxin B
Glaucocalyxin B Chemical Structure CAS No.: 80508-81-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Glaucocalyxin B is an enantio-kaurane diterpene extracted from the traditional Chinese medicine Herbaceae and has anti-cancer and anti~inflammatory activities. The IC50 for reducing HL-60 growth within 24 hours is about 5.86 μM.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
The proliferation of HL-60 cells is dose-dependently inhibited by glaucocalyxin A (GlnA) and (GlnB), with IC50 values of roughly 6.15 and 5.86 µM, respectively, after 24 hours. Reactive oxygen species (ROS) buildup, DNA damage, G2/M phase cycle arrest, and HL-60 cell death can all be brought on by Gln A and B [1]. Through the induction of autophagy and death, GlnB suppresses the growth of human cervical cancer cells in vitro. This process may be facilitated by the Akt/phosphatidylinositol 4,5-bisphosphate 3-kinase pathway. The growth of cervical cancer cell lines HeLa and SiHa was dose-dependently reduced by GlnB therapy. Poly(ADP-ribose) polymerase 1 cleavage is enhanced and apoptotic cell populations are increased by GlnB. Additionally, GlnB promoted the cleavage of the light chain 3 II/I protein, indicating the induction of autophagy. Phosphatase and tensin homologs are expressed more when GlnB is administered, whereas phosphorylated protein kinase B is expressed less [2]. One of the five enantio-kaurinic acid diterpenoids, glaucocalyxin B (GLB), has the ability to significantly lower different levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cyclic Oxygenase (COX)-2, and inducible nitric oxide, which is produced in microglia by lipopolysaccharide-activated oxidase synthase (iNOS) [3].
References

[1]. Glaucocalyxin A and B-induced cell death is related to GSH perturbation in human leukemia HL-60 cells. Anticancer Agents Med Chem. 2013 Oct;13(8):1280-90.

[2]. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells. Mol Med Rep. 2016 Aug;14(2):1751-5.

[3]. Anti-inflammatory effects of glaucocalyxin B in microglia cells. J Pharmacol Sci. 2015 May;128(1):35-46.

Additional Infomation
Glaucocalyxin B has been reported in Isodon japonicus and Isodon pharicus with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H30O5
Molecular Weight
374.4706
Exact Mass
374.209
CAS #
80508-81-2
PubChem CID
14193399
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
509.1±50.0 °C at 760 mmHg
Melting Point
190.5-191 ºC
Flash Point
172.9±23.6 °C
Vapour Pressure
0.0±3.0 mmHg at 25°C
Index of Refraction
1.554
LogP
1.37
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
2
Heavy Atom Count
27
Complexity
752
Defined Atom Stereocenter Count
7
SMILES
CC(=O)O[C@@H]1[C@H]2CC[C@@H]3[C@]1([C@@H](C[C@H]4[C@]3(CCC(=O)C4(C)C)C)O)C(=O)C2=C
InChi Key
LSUXOKVMORWDLT-KEXKRWMXSA-N
InChi Code
InChI=1S/C22H30O5/c1-11-13-6-7-14-21(5)9-8-16(24)20(3,4)15(21)10-17(25)22(14,18(11)26)19(13)27-12(2)23/h13-15,17,19,25H,1,6-10H2,2-5H3/t13-,14-,15+,17+,19+,21-,22-/m0/s1
Chemical Name
[(1R,2R,4S,9R,10S,13S,16R)-2-hydroxy-5,5,9-trimethyl-14-methylidene-6,15-dioxo-16-tetracyclo[11.2.1.01,10.04,9]hexadecanyl] acetate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~267.04 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1.25 mg/mL (3.34 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 12.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 1.25 mg/mL (3.34 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 12.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1.25 mg/mL (3.34 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 12.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6704 mL 13.3522 mL 26.7044 mL
5 mM 0.5341 mL 2.6704 mL 5.3409 mL
10 mM 0.2670 mL 1.3352 mL 2.6704 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us