yingweiwo

Ginsenoside Rg5

Cat No.:V32104 Purity: ≥98%
Ginsenoside Rg5 is the major component of red ginseng and is a competitive agonist of IGF-1R.
Ginsenoside Rg5
Ginsenoside Rg5 Chemical Structure CAS No.: 186763-78-0
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Ginsenoside Rg5 is the major component of red ginseng and is a competitive agonist of IGF-1R. Ginsenoside Rg5 competes for the binding site of IGF-1R and blocks the binding of IGF-1 to IGF-1R (IC50 is about 90 nM). Ginsenoside Rg5 also inhibits COX-2 mRNA expression by inhibiting the DNA-binding activity of NF-κB p65.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Ginsenoside Rg5 is an IGF-1R-angiogenic agent. Ginsenoside Rg5 exhibits angiogenic activity, which can be reduced by IGF-1R knockdown. Docking analysis was used to investigate the potential interaction of ginsenoside Rg5 with IGF-1R. The docking results indicated that ginsenoside Rg5 may interact with IGF-1R, and docking analysis was carried out. Rg5 binds to the cysteine-docking domain of IGF-1R at two locations, A and B, with Kd values of 20 and 27 nM, respectively. Using Rg5 as a transferable label for IGF-1 and HUVEC, the IC50 value was ~90 μM, which was higher than the IC50 value of ~1.4 nM for unlabeled IGF-1 [1]. The MTT assay results revealed that after 24, 48, and 72 hours of treatment with ginsenoside Rg5, dose-related parameters influenced MCF-7 cell growth. Various concentrations (0, 25, 50, and 100 μM) of ginsenoside Rg5 influenced MCF-7 cell cycle-related cosmetics. The induced cell cycle appears to be in the G0/G1 phase [3].
ln Vivo
By blocking NF-κB p65's ability to bind DNA in response to lipopolysaccharide (LPS) stimulation in BV2 astrocytes, ginsenoside Rg5 suppresses the mRNA expression of COX-2. COX-2 and NF-κB p65 expression in the Rg5 model group. Acute cellular respiration occurred and renal tubular injury was evident in the group treated with low-dose ginsenoside Rg5 (10 mg/kg). Nevertheless, while appearing to have histologically normal renal tubules, no inflammation or cast formation was seen in the renal tissue in another group of ginsenoside Rg5 (20 mg/kg) [2].
References

[1]. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation. J Biol Chem. 2015 Jan 2;290(1):467-77.

[2]. Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis. Nutrients. 2016 Sep 13;8(9). pii: E566.

[3]. Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5. J Ginseng Res. 2015 Apr;39(2):125-34.

Additional Infomation
Ginsenoside Rg5 is a triterpenoid saponin. It has a role as a metabolite.
Ginsenoside Rg5 has been reported in Panax notoginseng and Centella asiatica with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C42H70O12
Molecular Weight
766.9980
Exact Mass
766.486
CAS #
186763-78-0
PubChem CID
11550001
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
855.6±65.0 °C at 760 mmHg
Flash Point
471.2±34.3 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.592
LogP
6.81
Hydrogen Bond Donor Count
8
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
9
Heavy Atom Count
54
Complexity
1380
Defined Atom Stereocenter Count
19
SMILES
CC(=CC/C=C(\C)/[C@H]1CC[C@@]2([C@@H]1[C@@H](C[C@H]3[C@]2(CC[C@@H]4[C@@]3(CC[C@@H](C4(C)C)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O)C)C)O)C)C
InChi Key
NJUXRKMKOFXMRX-RNCAKNGISA-N
InChi Code
InChI=1S/C42H70O12/c1-21(2)10-9-11-22(3)23-12-16-42(8)30(23)24(45)18-28-40(6)15-14-29(39(4,5)27(40)13-17-41(28,42)7)53-38-36(34(49)32(47)26(20-44)52-38)54-37-35(50)33(48)31(46)25(19-43)51-37/h10-11,23-38,43-50H,9,12-20H2,1-8H3/b22-11+/t23-,24-,25-,26-,27+,28-,29+,30+,31-,32-,33+,34+,35-,36-,37+,38+,40+,41-,42-/m1/s1
Chemical Name
(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~65.19 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.26 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.26 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.26 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3038 mL 6.5189 mL 13.0378 mL
5 mM 0.2608 mL 1.3038 mL 2.6076 mL
10 mM 0.1304 mL 0.6519 mL 1.3038 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us