Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
ln Vitro |
Ginseng contains a saponin called ginsenoside Rf, although only in trace amounts. In rat sensory neurons, ginsenoside Rf quickly and reversibly blocks N-type and other high-threshold Ca2+ channels to the same degree as maximal dosages of opioids at saturating concentrations. This effect is dose-dependent (half-maximal inhibition: 40 μM) and is almost completely eliminated when neurons are pretreated with the GTP-binding protein inhibitor pertussis toxin. Ca2+ channels in the hybrid F-11 cell line are likewise inhibited by ginsenoside Rf [1].
|
---|---|
ln Vivo |
Since blockage of Ca2+ channels in sensory neurons contributes to the analgesic effects of opioids, the analgesic effects of ginsenoside Rf were studied. By systemic administration of ginsenoside Rf to mice, a dose-dependent antinociceptive effect was found using two independent tonic pain assays: in the acetic acid abdominal contraction test, the ED50 was 56 ± 9 mg/kg, a concentration consistent with that reported for aspirin Concentrations similar to those of acetaminophen in the same assay; during the tonic phase of the biphasic formalin test, the ED50 was 129 ± 32 mg/kg [2].
|
References | |
Additional Infomation |
Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane.
Ginsenoside Rf has been reported in Panax pseudoginseng, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of). |
Molecular Formula |
C42H72O14
|
---|---|
Molecular Weight |
801.0127
|
Exact Mass |
800.492
|
CAS # |
52286-58-5
|
PubChem CID |
441922
|
Appearance |
White to off-white solid powder
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
912.3±65.0 °C at 760 mmHg
|
Flash Point |
505.5±34.3 °C
|
Vapour Pressure |
0.0±0.6 mmHg at 25°C
|
Index of Refraction |
1.602
|
LogP |
3.51
|
Hydrogen Bond Donor Count |
10
|
Hydrogen Bond Acceptor Count |
14
|
Rotatable Bond Count |
10
|
Heavy Atom Count |
56
|
Complexity |
1410
|
Defined Atom Stereocenter Count |
21
|
SMILES |
CC(=CCC[C@@](C)([C@H]1CC[C@@]2([C@@H]1[C@@H](C[C@H]3[C@]2(C[C@@H]([C@@H]4[C@@]3(CC[C@@H](C4(C)C)O)C)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O)C)O)C)O)C
|
InChi Key |
UZIOUZHBUYLDHW-XUBRWZAZSA-N
|
InChi Code |
InChI=1S/C42H72O14/c1-20(2)10-9-13-42(8,52)21-11-15-40(6)28(21)22(45)16-26-39(5)14-12-27(46)38(3,4)35(39)23(17-41(26,40)7)53-37-34(32(50)30(48)25(19-44)55-37)56-36-33(51)31(49)29(47)24(18-43)54-36/h10,21-37,43-52H,9,11-19H2,1-8H3/t21-,22+,23-,24+,25+,26+,27-,28-,29+,30+,31-,32-,33+,34+,35-,36-,37+,39+,40+,41+,42-/m0/s1
|
Chemical Name |
(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~124.84 mM)
Ethanol : ~50 mg/mL (~62.42 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 5: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 6: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.2484 mL | 6.2421 mL | 12.4842 mL | |
5 mM | 0.2497 mL | 1.2484 mL | 2.4968 mL | |
10 mM | 0.1248 mL | 0.6242 mL | 1.2484 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.