GGTI 298 TFA salt

Alias: GGTI 298; GGTI-298; GGTI298 TFA salt; GGTI298 Trifluoroacetate;(S)-methyl 2-(4-(((R)-2-amino-3-mercaptopropyl)amino)-2-(naphthalen-1-yl)benzamido)-4-methylpentanoate TFA salt;
Cat No.:V2627 Purity: ≥98%
GGTI 298 TFA (GGTI-298), the trifluoroacetic acid salt of GGTI 298, is a novel and potent geranylgeranyltransferase I (GGTase-I)inhibitor with ability to arrest human tumor cells in the G1 phase of the cell cycle and induce apoptosis.
GGTI 298 TFA salt Chemical Structure CAS No.: 1217457-86-7
Product category: Transferase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of GGTI 298 TFA salt:

  • GGTI-298 free base
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

GGTI 298 TFA (GGTI-298), the trifluoroacetic acid salt of GGTI 298, is a novel and potent geranylgeranyltransferase I (GGTase-I) inhibitor with ability to arrest human tumor cells in the G1 phase of the cell cycle and induce apoptosis. It has potential antitumor actrivity. GGTI 298 strongly inhibiting the processing of geranylgeranylated Rap1A with little effect on processing of farnesylated Ha-Ras, with IC50 values of 3 and > 10 μM, respectively. GGTI-298 has little effect on the expression levels of CDK2, CDK4, CDK6, cyclins D1 and E, but decreases the levels of cyclin A.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
The apical K+ conductance increased by cAMP agonist is considerably reduced by RhoA inhibitor (GGTI298 Trifluoroacetate)[1]. When GGTI298 Trifluoroacetate and TRAIL are used to cause DR5-dependent apoptosis, DR4 knockdown eliminates NF-κB activation and makes the cell more susceptible to this process. Trifluoroacetate/TRAIL (GGTI298 ) inhibits Akt and increases NF-κB. IκBα and p-Akt reduction produced by GGTI298/TRAIL are prevented by DR5 knockdown, indicating that DR5 mediates the reduction of these molecules induced by GGTI298/TRAIL. On the other hand, DR4 knockdown makes GGTI298 /TRAIL-induced p-Akt decrease even easier[2].
ln Vivo
In vivo mouse ileal loop experiments demonstrate that injections of TRAM-34, GGTI298 Trifluoroacetate, or H1152 in conjunction with cholera toxin reduce fluid accumulation in a dose-dependent manner[1].
Animal Protocol
dissolved in DMSO, dilute in saline; 1.16 mg/kg; s.c. injection
Nude mice
References
[1]. Sheikh IA, et al. The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea. J Biol Chem. 2013 Jul 12;288(28):20404-15.
[2]. Chen S, et al. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer. 2010 Jan 29;9:23.
[3]. McGuire TF, et al. Platelet-derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation but not farnesylation. J Biol Chem. 1996 Nov 1;271(44):27402-7
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H33N3O3S.C2HF3O2
Molecular Weight
593.66
CAS #
1217457-86-7
Related CAS #
GGTI298;180977-44-0
SMILES
CC(C)C[C@@H](C(OC)=O)NC(C1=CC=C(NC[C@@H](N)CS)C=C1C2=C3C=CC=CC3=CC=C2)=O.O=C(O)C(F)(F)F
Synonyms
GGTI 298; GGTI-298; GGTI298 TFA salt; GGTI298 Trifluoroacetate;(S)-methyl 2-(4-(((R)-2-amino-3-mercaptopropyl)amino)-2-(naphthalen-1-yl)benzamido)-4-methylpentanoate TFA salt;
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:100 mg/mL (168.4 mM)
Water:<1 mg/mL
Ethanol:100 mg/mL (168.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (4.21 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (4.21 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.21 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6845 mL 8.4223 mL 16.8447 mL
5 mM 0.3369 mL 1.6845 mL 3.3689 mL
10 mM 0.1684 mL 0.8422 mL 1.6845 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top