yingweiwo

Geraniin

Cat No.:V29933 Purity: ≥98%
Geraniin is a tumor necrosis factor α (TNF-α) release inhibitor (antagonist) with anti-tumor, anti~inflammatory, and anti-hyperglycemic activities, with IC50 of 43 μM.
Geraniin
Geraniin Chemical Structure CAS No.: 60976-49-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Geraniin is a tumor necrosis factor α (TNF-α) release inhibitor (antagonist) with anti-tumor, anti~inflammatory, and anti-hyperglycemic activities, with IC50 of 43 μM.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Geraniin has an IC50 value of 43 μM for blocking TNF-α release[1]. Throughout this time, geraniin has been utilized as a botanical remedy for a range of conditions, such as antihyperglycemic, anticancer, and anti-inflammatory effects. OVCAR3 and SKOV3 cell viability was dramatically decreased by geraniin in a concentration-dependent way. Geranol treatment resulted in IC50 values of 34.5±2.8 μM in OVCAR3 cells and 23.6±1.9 μM in SKOV3 cells. However, utilizing up to the maximum dose (80 μM) of geranol, treatment with 10 and 40 μM for 48 hours led to a substantial increase in cell fluorescence compared with normal versus control OVCAR3 cells (3.9 ± 1.1%). 22.6±1.4%) and 16.8±1.2%. Comparable outcomes were noted in SKOV3 cells [2].
ln Vivo
In comparison to acid treatment, geranol treatment postponed the formation of tumors, decreasing the percentage of tumor-bearing mice from 80.0% to 40.0% and the average number of tumors per mouse at week 20 from 3.8 to 1.1. Additionally, a schematic diagram demonstrated how geranin (50 mg/kg/d or 100 mg/kg/d) inhibited the activities of glutamic acid pyruvate aminotransferase, glutamic acid oxalopyruvate aminotransferase, starch esters, and total starch when treated with peroxidized oil[1].
References

[1]. New TNF-alpha releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-ki. Biol Pharm Bull. 2001 Oct;24(10):1145-8.

[2]. Geraniin suppresses ovarian cancer growth through inhibition of NF-κB activation and downregulation of Mcl-1 expression. J Biochem Mol Toxicol. 2017 Sep;31(9).

Additional Infomation
Geraniin is a tannin.
Geraniin has been reported in Euphorbia prostrata, Phyllanthus sellowianus, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C41H28O27
Molecular Weight
952.6448
Exact Mass
952.081
CAS #
60976-49-0
PubChem CID
3001497
Appearance
Off-white to yellow solid powder
Density
2.3±0.1 g/cm3
Index of Refraction
1.948
LogP
3.41
Hydrogen Bond Donor Count
14
Hydrogen Bond Acceptor Count
27
Rotatable Bond Count
3
Heavy Atom Count
68
Complexity
2080
Defined Atom Stereocenter Count
7
SMILES
C1[C@@H]2[C@@H]3[C@@H]([C@H]([C@@H](O2)OC(=O)C4=CC(=C(C(=C4)O)O)O)OC(=O)C5=CC(=C(C6=C5[C@@H]7C(=CC(=O)[C@@](C7(O)O)(O6)O)C(=O)O3)O)O)OC(=O)C8=CC(=C(C(=C8C9=C(C(=C(C=C9C(=O)O1)O)O)O)O)O)O
InChi Key
JQQBXPCJFAKSPG-SVYIMCMUSA-N
InChi Code
InChI=1S/C41H28O27/c42-13-1-8(2-14(43)24(13)48)34(54)67-39-33-32-30(64-38(58)12-6-19(47)41(61)40(59,60)23(12)22-11(37(57)66-33)5-17(46)27(51)31(22)68-41)18(63-39)7-62-35(55)9-3-15(44)25(49)28(52)20(9)21-10(36(56)65-32)4-16(45)26(50)29(21)53/h1-6,18,23,30,32-33,39,42-46,48-53,59-61H,7H2/t18-,23+,30-,32+,33-,39+,41+/m1/s1
Chemical Name
[(1R,7R,8S,26R,28S,29R,38R)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.04,38.07,26.08,29.011,16.017,22.032,37]tetraconta-3,11,13,15,17,19,21,32,34,36-decaen-28-yl] 3,4,5-trihydroxybenzoate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~104.97 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (2.62 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (2.62 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (2.62 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0497 mL 5.2486 mL 10.4971 mL
5 mM 0.2099 mL 1.0497 mL 2.0994 mL
10 mM 0.1050 mL 0.5249 mL 1.0497 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us