yingweiwo

FR 901464

Alias: FR 901464; FR901464; FR901464; 146478-72-0; (2S,3Z)-5-{[(2R,3R,5S,6S)-6-{(2E,4E)-5-[(3R,4R,5R,7S)-4,7-dihydroxy-7-methyl-1,6-dioxaspiro[2.5]oct-5-yl]-3-methylpenta-2,4-dien-1-yl}-2,5-dimethyltetrahydro-2H-pyran-3-yl]amino}-5-oxopent-3-en-2-yl acetate; CHEBI:65915; [(Z,2S)-5-[[(2R,3R,5S,6S)-6-[(2E,4E)-5-[(3R,4R,5R,7S)-4,7-Dihydroxy-7-methyl-1,6-dioxaspiro[2.5]octan-5-yl]-3-methylpenta-2,4-dienyl]-2,5-dimethyloxan-3-yl]amino]-5-oxopent-3-en-2-yl] acetate; FR-901464; [(E,2S)-4-[[(2R,3R,5S,6S)-6-[(2E,4E)-5-[(3R,4R,5R,7S)-4,7-dihydroxy-7-methyl-1,6-dioxaspiro[2.5]octan-5-yl]-3-methylpenta-2,4-dienyl]-2,5-dimethyloxan-3-yl]carbamoyl]but-3-en-2-yl] acetate; CHEMBL494107; FR-901464
Cat No.:V6291 Purity: =97.48%
FR901464 is a potent spliceosome inhibitor (antagonist) with significant anti-tumor and anti-cancer effects.
FR 901464
FR 901464 Chemical Structure CAS No.: 146478-72-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =97.48%

Product Description
FR901464 is a potent spliceosome inhibitor (antagonist) with significant anti-tumor and anti-cancer effects.
Biological Activity I Assay Protocols (From Reference)
Targets
Spliceosome
ln Vitro
FR901464 is a potent inhibitor of spliceosomes. It has shown remarkable anticancer activity against multiple human cancer cell lines. [2]
Researchers selected FR901464 as a candidate compound and investigated cell cycle transition, chromatin status and endogenous gene expression in FR901464-treated tumor cells having elevated transcriptional activity. FR901464 induced characteristic G1 and G2/M phase arrest in the cell cycle and internucleosomal degradation of genomic DNA with the same kinetics as activation of SV40 promoter-dependent cellular transcription in M-8 tumor cells. In contrast to the potent activation of the viral promoter, FR901464 suppressed the transcription of some inducible endogenous genes but not house keeping genes in M-8 cells. These results suggest that FR901464 may induce a dynamic change of chromatin structure, giving rise to strong antitumor activity, and therefore may represent a new type of drug for cancer chemotherapy.[1]
ln Vivo
FR901463, FR901464 and FR901465, novel antitumor substances, were isolated from the fermentation broth of Pseudomonas sp. No. 2663. Their antitumor activities were examined in three mouse tumor systems and one human tumor system. The three FR compounds prolonged the life of mice bearing murine ascitic tumor P388 leukemia (T/C values were 160%, 145% and 127% for FR901463, FR901464 and FR901465, respectively), and inhibited the growth of a human solid tumor, A549 lung adenocarcinoma, with different effective dose ranges. FR901464 exhibited most prominent effects on these tumor systems among the three FR compounds. FR901464 also inhibited the growth of murine solid tumors, Colon 38 carcinoma and Meth A fibrosarcoma. [1]
Enzyme Assay
In Vitro Splicing Reactions[2]
Pre-mRNA substrate was derived from the adenovirus major late transcript. A 32P-UTP body-labeled G(5′)ppp(5′)G-capped substrate was generated by T7 runoff transcription followed by gel purification. Nuclear extract was prepared from HeLa cells grown in DMEM/F12 1:1 and 5% (v/v) newborn calf serum. For splicing reactions, 10 nM pre-mRNA substrate was incubated with 60 mM potassium glutamate, 2 mM magnesium acetate, 2 mM ATP, 5 mM creatine phosphate, 0.05 mg mL–1 tRNA, and 50% (v/v) HeLa nuclear extract at 30 °C.
Denaturing Gel Analysis[2]
RNA was extracted from in vitro splicing reaction and separated on a 15% (v/v) denaturing polyacrylamide gel. 32P-labeled RNA species were visualized by phosphorimaging and quantified with ImageQuant software. Splicing efficiency is the amount of mRNA relative to total RNA and normalized to a DMSO control reaction. IC50 values for inhibitors are the concentration of inhibitor that causes 50% decrease of splicing efficiency, which were derived from averaged plots of splicing efficiency vs compound concentration.
Cell Assay
Native Gel Analysis[2]
Splicing reactions were set up as described above and incubated at 30 °C for 4–30 min. Time point samples were kept on ice until all samples were ready for analysis. Amounts of 10 μL of splicing reactions were mixed with 10 μL of native gel loading buffer (20 mM Trizma base, 20 mM glycine, 25% (v/v) glycerol, 0.1% (w/v) cyan blue, 0.1% (w/v) bromophenol blue, 1 mg mL–1 of heparin sulfate) and incubated at room temperature for 5 min before loading onto a 2.1% (w/v) low-melting temperature agarose gel. Gels were run at 72 V for 3.5 h, dried onto Whatman paper, and exposed to phosphorimaging screens, which were digitized with a Typhoon Scanner.
Animal Protocol
FR901463, FR901464 and FR901465, novel antitumor substances, were isolated from the fermentation broth of Pseudomonas sp. No. 2663. Their antitumor activities were examined in three mouse tumor systems and one human tumor system. The three FR compounds prolonged the life of mice bearing murine ascitic tumor P388 leukemia (T/C values were 160%, 145% and 127% for FR901463, FR901464 and FR901465, respectively), and inhibited the growth of a human solid tumor, A549 lung adenocarcinoma, with different effective dose ranges. FR901464 exhibited most prominent effects on these tumor systems among the three FR compounds. FR901464 also inhibited the growth of murine solid tumors, Colon 38 carcinoma and Meth A fibrosarcoma. To address the involvement of transcriptional activation ability of the three FR compounds in the antitumor effect, we selected FR901464 as a candidate compound and investigated cell cycle transition, chromatin status and endogenous gene expression in FR901464-treated tumor cells having elevated transcriptional activity. FR901464 induced characteristic G1 and G2/M phase arrest in the cell cycle and internucleosomal degradation of genomic DNA with the same kinetics as activation of SV40 promoter-dependent cellular transcription in M-8 tumor cells. In contrast to the potent activation of the viral promoter, FR901464 suppressed the transcription of some inducible endogenous genes but not house keeping genes in M-8 cells. These results suggest that FR901464 may induce a dynamic change of chromatin structure, giving rise to strong antitumor activity, and therefore may represent a new type of drug for cancer chemotherapy.[1]
References

[1]. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot (Tokyo). 1996 Dec;49(12):1204-11.

[2]. Enantioselective total syntheses of FR901464 and spliceostatin A and evaluation of splicing activity of key derivatives. J Org Chem. 2014 Jun 20;79(12):5697-709.

Additional Infomation
FR901464 is a spiro-epoxide with potent anticancer activity that lowers the mRNA levels of oncogenes and tumour supressor genes. It is isolated from Pseudomonas sp. no.2663. It has a role as an antimicrobial agent, an antineoplastic agent and a bacterial metabolite. It is an acetate ester, a cyclic hemiketal, a member of pyrans, a monocarboxylic acid amide and a spiro-epoxide.
(2S,3Z)-5-{[(2R,3R,5S,6S)-6-{(2E,4E)-5-[(3R,4R,5R,7S)-4,7-dihydroxy-7-methyl-1,6-dioxaspiro[2.5]oct-5-yl]-3-methylpenta-2,4-dien-1-yl}-2,5-dimethyltetrahydro-2H-pyran-3-yl]amino}-5-oxopent-3-en-2-yl acetate has been reported in Burkholderia thailandensis with data available.
FR901464 (1) and spliceostatin A (2) are potent inhibitors of spliceosomes. These compounds have shown remarkable anticancer activity against multiple human cancer cell lines. Herein, we describe efficient, enantioselective syntheses of FR901464, spliceostatin A, six corresponding diastereomers and an evaluation of their splicing activity. Syntheses of spliceostatin A and FR901464 were carried out in the longest linear sequence of 9 and 10 steps, respectively. To construct the highly functionalized tetrahydropyran A-ring, we utilized CBS reduction, Achmatowicz rearrangement, Michael addition, and reductive amination as key steps. The remarkable diastereoselectivity of the Michael addition was specifically demonstrated with different substrates under various reaction conditions. The side chain B was prepared from an optically active alcohol, followed by acetylation and hydrogenation over Lindlar's catalyst. The other densely functionalized tetrahydropyran C-ring was derived from readily available (R)-isopropylidene glyceraldehyde through a route featuring 1,2-addition, cyclic ketalization, and regioselective epoxidation. These fragments were coupled together at a late stage through amidation and cross-metathesis in a convergent manner. Six key diastereomers were then synthesized to probe the importance of specific stereochemical features of FR901464 and spliceostatin A, with respect to their in vitro splicing activity.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H41NO8
Molecular Weight
507.624
Exact Mass
507.283
Elemental Analysis
C, 63.89; H, 8.14; N, 2.76; O, 25.21
CAS #
146478-72-0
PubChem CID
10553647
Appearance
White to off-white solid powder
Density
1.21g/cm3
Boiling Point
702.7ºC at 760mmHg
Flash Point
378.8ºC
Vapour Pressure
7.94E-23mmHg at 25°C
Index of Refraction
1.553
LogP
3.152
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
9
Heavy Atom Count
36
Complexity
900
Defined Atom Stereocenter Count
9
SMILES
O1C([H])([H])C21C([H])([H])[C@@](C([H])([H])[H])(O[H])O[C@]([H])(/C(/[H])=C(\[H])/C(/C([H])([H])[H])=C(\[H])/C([H])([H])[C@@]1([H])[C@@]([H])(C([H])([H])[H])C([H])([H])C([H])([C@@]([H])(C([H])([H])[H])O1)N([H])C(/C(/[H])=C(\[H])/[C@]([H])(C([H])([H])[H])OC(C([H])([H])[H])=O)=O)[C@@]2([H])O[H]
InChi Key
PJKVJJDQXZARCA-QHYZBLTGSA-N
InChi Code
InChI=1S/C27H41NO8/c1-16(8-11-23-25(31)27(15-33-27)14-26(6,32)36-23)7-10-22-17(2)13-21(19(4)35-22)28-24(30)12-9-18(3)34-20(5)29/h7-9,11-12,17-19,21-23,25,31-32H,10,13-15H2,1-6H3,(H,28,30)/b11-8+,12-9-,16-7+/t17-,18-,19+,21+,22-,23+,25+,26-,27+/m0/s1
Chemical Name
[(Z,2S)-5-[[(2R,3R,5S,6S)-6-[(2E,4E)-5-[(3R,4R,5R,7S)-4,7-dihydroxy-7-methyl-1,6-dioxaspiro[2.5]octan-5-yl]-3-methylpenta-2,4-dienyl]-2,5-dimethyloxan-3-yl]amino]-5-oxopent-3-en-2-yl] acetate
Synonyms
FR 901464; FR901464; FR901464; 146478-72-0; (2S,3Z)-5-{[(2R,3R,5S,6S)-6-{(2E,4E)-5-[(3R,4R,5R,7S)-4,7-dihydroxy-7-methyl-1,6-dioxaspiro[2.5]oct-5-yl]-3-methylpenta-2,4-dien-1-yl}-2,5-dimethyltetrahydro-2H-pyran-3-yl]amino}-5-oxopent-3-en-2-yl acetate; CHEBI:65915; [(Z,2S)-5-[[(2R,3R,5S,6S)-6-[(2E,4E)-5-[(3R,4R,5R,7S)-4,7-Dihydroxy-7-methyl-1,6-dioxaspiro[2.5]octan-5-yl]-3-methylpenta-2,4-dienyl]-2,5-dimethyloxan-3-yl]amino]-5-oxopent-3-en-2-yl] acetate; FR-901464; [(E,2S)-4-[[(2R,3R,5S,6S)-6-[(2E,4E)-5-[(3R,4R,5R,7S)-4,7-dihydroxy-7-methyl-1,6-dioxaspiro[2.5]octan-5-yl]-3-methylpenta-2,4-dienyl]-2,5-dimethyloxan-3-yl]carbamoyl]but-3-en-2-yl] acetate; CHEMBL494107; FR-901464
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~197.00 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.92 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.92 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9700 mL 9.8499 mL 19.6998 mL
5 mM 0.3940 mL 1.9700 mL 3.9400 mL
10 mM 0.1970 mL 0.9850 mL 1.9700 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us