Size | Price | |
---|---|---|
Other Sizes |
ln Vitro |
Chlorfenuron is a commonly used plant growth regulator that makes kiwi fruits bigger and heavier. The Sulforhodamine B assay was used to investigate the cytotoxicity of clofenuron and its metabolites against CHO cells. An IC50 of 12.12±2.14 μM for chlorfenuron indicates considerable cytotoxicity to CHO cells[1]. Chlorfenuron has a half-life of 15.8–23.0 days. The pulp has a final residual chlorfenuron content of ≤0.002 mg/kg, with the peel containing the majority of the residue. According to the risk assessment, there is not a substantial risk to health associated with clofenuron found in citrus fruits. Consequently, it is safe to apply chlorfenuron on citrus fruits [2].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
In both the main study and the biliary excretion study, at least 4 Sprague-Dawley rats/sex were dosed orally by gavage with 100 mg/kg of CPPU-UL-phenyl-(14)C (radiochemical purity: 99.16%; specific activity: 28.04 mCi/mmol) fortified with unlabeled Forchlorfenuron technical (purity: 98.2%). In the main study, urine, feces and air samples were collected periodically for 7 days post-dose. In the biliary excretion study, bile samples were collected periodically via the bile duct cannula up to 72 hours post-dose. The primary route of excretion was in the urine ((M) urine: 79%, feces: 16%, (F) urine: 68%, feces: 28%). During the 1st 24 hours post-dose, 82% of the radiolabel was recovered from the males and 66% from the females. Less than 0.1% of the administered dose was recovered in the air. The excretory half-lives ranged from 13 to 16 hours for both sexes for both the urine and feces. Recovery in the tissues at 7 days post dose represented less than 1% of the administered dose. In the biliary excretion study, 23 and 20% of the administered radiolabel were recovered in the bile from the males and females, respectively. However, the absorption kinetics could not be readily assessed because no urine or feces samples were collected simultaneously from these study animals. Absorbed by leaves, stem, cotyledon and germinated seeds. Metabolism / Metabolites At least 4 Sprague-Dawley rats/sex were dosed orally by gavage with 100 mg/kg of CPPU-UL-phenyl-(14)C (radiochemical purity: 99.16%; specific activity: 28.04 mCi/mmol) fortified with unlabeled Forchlorfenuron technical (purity: 98.2%). ... The primarily metabolite recovered in the urine was CPPU-sulfate with substitution on the phenyl ring. It represented 84 and 57% of the administered dose for the males and females, respectively. Other metabolites were products of phenyl ring hydroxylations as well. Hydroxyl-CPPU was the predominant metabolite recovered from the feces with 11 and 18% of the administered dose recovered from the males and females, respectively. Biological Half-Life At least 4 Sprague-Dawley rats/sex were dosed orally by gavage with 100 mg/kg of CPPU-UL-phenyl-(14)C (radiochemical purity: 99.16%; specific activity: 28.04 mCi/mmol) fortified with unlabeled Forchlorfenuron technical (purity: 98.2%). ... The excretory half-lives ranged from 13 to 16 hours for both sexes for both the urine and feces. |
References |
|
Additional Infomation |
Forchlorfenuron is a member of the class of phenylureas that is urea substituted by a phenyl group and a 2-chloropyridin-4-yl group at positions 1 and 3 respectively. It is a plant growth regulator widely used in agriculture for improving fruit quality and fruit size. It has a role as a plant growth regulator. It is a member of phenylureas and a monochloropyridine.
Forchlorfenuron is a diphenylurea-derivative cytokinin growth stimulating substance used as plant growth regulator (PGR) to enhance fruit set, size and increase yields. It is absorbed by most plant parts and acts synergistically with natural auxins to promote cell division and growth. It has been approved for use on kiwi fruit and grapes in the USA, and it has been associated with exploding watermelons in China. Forchlorfenuronis is commonly used in horticulture to stimulate the growth of kiwi fruit and grapes. Mechanism of Action Septins are filamentous GTPases that associate with cell membranes and the cytoskeleton and play essential roles in cell division and cellular morphogenesis. Septins are implicated in many human diseases including cancer and neuropathies. Small molecules that reversibly perturb septin organization and function would be valuable tools for dissecting septin functions and could be used for therapeutic treatment of septin-related diseases. Forchlorfenuron is a plant cytokinin previously shown to disrupt septin localization in budding yeast. However, it is unknown whether forchlorfenuron directly targets septins and whether it affects septin organization and functions in mammalian cells. Here, we show that forchlorfenuron alters septin assembly in vitro without affecting either actin or tubulin polymerization. In live mammalian cells, forchlorfenuron dampens septin dynamics and induces the assembly of abnormally large septin structures. Forchlorfenuron has a low level of cytotoxicity, and these effects are reversed upon forchlorfenuron washout. Significantly, forchlorfenuron treatment induces mitotic and cell migration defects that phenocopy the effects of septin depletion by small interfering RNA. It promotes cell division, differentiation and development; induces budding of callus, and controls apical dominance; breaks dormancy of lateral buds and promotes germination; delays ageing process and maintains chlorophyll in excised leaves; regulates the transport of nutrients; promotes fruit formation, etc. |
Molecular Formula |
C12H10CLN3O
|
---|---|
Molecular Weight |
247.68
|
Exact Mass |
247.051
|
CAS # |
68157-60-8
|
Related CAS # |
Forchlorfenuron-d5;1398065-87-6
|
PubChem CID |
93379
|
Appearance |
White to off-white solid powder
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
426.5±55.0 °C at 760 mmHg
|
Melting Point |
170-172°C
|
Flash Point |
211.7±31.5 °C
|
Vapour Pressure |
0.0±1.1 mmHg at 25°C
|
Index of Refraction |
1.629
|
LogP |
3.83
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
17
|
Complexity |
256
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
GPXLRLUVLMHHIK-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C12H10ClN3O/c13-11-8-10(6-7-14-11)16-12(17)15-9-4-2-1-3-5-9/h1-8H,(H2,14,15,16,17)
|
Chemical Name |
1-(2-chloropyridin-4-yl)-3-phenylurea
|
Synonyms |
CPPU; 4PU30 cpd; Forchlorfenuron
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 100 mg/mL (~403.75 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (10.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (10.09 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (10.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.0375 mL | 20.1873 mL | 40.3747 mL | |
5 mM | 0.8075 mL | 4.0375 mL | 8.0749 mL | |
10 mM | 0.4037 mL | 2.0187 mL | 4.0375 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.