yingweiwo

Farnesol

Alias: HSDB445 HSDB-445 HSDB 445
Cat No.:V20921 Purity: ≥98%
Farnesol (HSDB445; HSDB-445; HSDB 445) is an inducer of apoptosis in cell cultures.
Farnesol
Farnesol Chemical Structure CAS No.: 4602-84-0
Product category: Endogenous Metabolite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
Other Sizes

Other Forms of Farnesol:

  • Farnesol-d6
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Farnesol (HSDB445; HSDB-445; HSDB 445) is an inducer of apoptosis in cell cultures. It is also used as an antimicrobial agent, and a flavoring agent.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In Candida albicans, farnesol is a sesquiterpene alcohol that alters intercellular communication. Inhibitory activities of the compound against bacteria, Paracoccidioides brasiliensis, and non-albicans Candida species have also been demonstrated. FARNESOL was evaluated in the concentration range of 0.29-150 μM, and the minimum inhibitory concentration (MIC) was established in accordance with the M27-A3 procedure as stated. The study revealed that farnesol had inhibitory activity (MIC range: 0.29-75.0 μM) against Cryptococcus gattii and Neoformans. While farnesol does not significantly change phospholipase activity, there is a tendency for its activity to decline [1].
ADME/Pharmacokinetics
Metabolism / Metabolites
Farnesol is metabolized to farnesyl glucuronide, hydroxyfarnesol and hydroxyfarnesyl glucuronide by human tissue microsomes. ... Farnesol metabolism was examined by a sensitive LC (liquid chromatography)-MS/MS method. Results indicate that farnesol is a good substrate for glucuronidation in human liver, kidney and intestine microsomes (values in nmol/min per mg). Initial analysis using expressed human UGTs indicated that UGTs 1A1 and 2B7 were primarily responsible for glucuronidation in vitro, with significantly lower activity for all the other UGTs tested (UGTs 1A3, 1A4, 1A6, 1A9 and 2B4). Kinetic analysis and inhibition experiments indicate that, in liver microsomes, UGT1A1 is primarily responsible for farnesol glucuronidation; however, in intestine microsomes, UGT2B7 is probably the major isoform involved, with a very-low-micromolar K(m). ...
Farnesol has known human metabolites that include (2S,3S,4S,5R)-3,4,5-Trihydroxy-6-(3,7,11-trimethyldodeca-2,6,10-trienoxy)oxane-2-carboxylic acid.
References

[1]. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet Microbiol. 2012 Oct 12;159(3-4):375-80.

Additional Infomation
Farnesol is a colorless liquid with a delicate floral odor. (NTP, 1992)
A colorless liquid extracted from oils of plants such as citronella, neroli, cyclamen, and tuberose. It is an intermediate step in the biological synthesis of cholesterol from mevalonic acid in vertebrates. It has a delicate odor and is used in perfumery. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Farnesol has been reported in Aristolochia triangularis, Humulus lupulus, and other organisms with data available.
A colorless liquid extracted from oils of plants such as citronella, neroli, cyclamen, and tuberose. It is an intermediate step in the biological synthesis of cholesterol from mevalonic acid in vertebrates. It has a delicate odor and is used in perfumery. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
See also: Chamaemelum nobile flower (part of).
Mechanism of Action
... the effect of 20 uM farnesol on the distribution of protein kinase C (PKC) between cytosolic and membrane fractions of HeLa S3K cells and fibroblasts line CF-3 was examined. In HeLa cells farnesol caused translocation of PKC from membrane fraction to cytosol after 1h of incubation and also prevented PMA-stimulated induction of PKC translocation from cytosol to membranes. Up to 6 h of incubation, there was no effect of farnesol on PKC localization in CF-3 fibroblasts. The results point to possible involvement of PKC in the toxic effect of farnesol ...
... in MCF-7 human breast cancer cells, farnesol induced the expression of thyroid hormone receptor (THR) beta1 mRNA and protein at concentrations that inhibited cell growth. Changes in the expression of THR responsive genes, however, suggested that farnesol inhibits THR-mediated signaling. Protein extracts from cells treated with farnesol displayed decreased binding to oligodeoxynucleotides containing a consensus sequence for the THR response element, despite the higher THRbeta1 content, providing a mechanism to explain the decreased transcriptional activity of cellular THRs.
Farnesol-mediated apoptosis was prevented by transformation with a plasmid coding for the phosphatidic acid (PA) phosphatase LPP3, but not by an inactive LPP3 point mutant. Farnesol did not directly inhibit LPP3 PA phosphatase enzyme activity in an in vitro mixed micelle assay. ...
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H26O
Molecular Weight
222.37
Exact Mass
222.198
CAS #
4602-84-0
Related CAS #
Farnesol-d6;166447-71-8
PubChem CID
3327
Appearance
Colorless to light yellow liquid
Density
0.9±0.1 g/cm3
Boiling Point
283.4±0.0 °C at 760 mmHg
Melting Point
< 25 °C
Flash Point
96.1±0.0 °C
Vapour Pressure
0.0±1.3 mmHg at 25°C
Index of Refraction
1.485
LogP
5.31
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
7
Heavy Atom Count
16
Complexity
265
Defined Atom Stereocenter Count
0
SMILES
C/C(C)=C\CC/C(C)=C/CC/C(C)=C/CO
InChi Key
CRDAMVZIKSXKFV-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H26O/c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16/h7,9,11,16H,5-6,8,10,12H2,1-4H3
Chemical Name
3,7,11-trimethyldodeca-2,6,10-trien-1-ol
Synonyms
HSDB445 HSDB-445 HSDB 445
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~449.70 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.24 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.24 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (11.24 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.4970 mL 22.4850 mL 44.9701 mL
5 mM 0.8994 mL 4.4970 mL 8.9940 mL
10 mM 0.4497 mL 2.2485 mL 4.4970 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us