yingweiwo

Ethyl ferulate

Cat No.:V30602 Purity: ≥98%
Ethyl ferulate, a natural lipophilic analogue of ferulic acid extracted from Ligusticum chuanxiong, can induce heme oxygenase 1 (HO-1) and protect rat neurons from oxidative stress.
Ethyl ferulate
Ethyl ferulate Chemical Structure CAS No.: 4046-02-0
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Ethyl ferulate, a natural lipophilic analogue of ferulic acid extracted from Ligusticum chuanxiong, can induce heme oxygenase 1 (HO-1) and protect rat neurons from oxidative stress. Ethyl ferulate also protects neurons from systemic oxidative stress and neurotoxicity caused by beta-amyloid peptide (1-42).
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In astrocytes and hippocampal neurons, ethyl ferulate (1-50 μM) increases HO activity, HO-1 mRNA, and protein expression [1]. The meta-scaffold GOX senses cell death, and ethyl ferulate (5 μM, 12 hours) can safeguard generation neural cells by ethyl ferulate (10-50 μM, 24). Aβ-peptide (1-42) senses HO-1[1] and protects hippocampus nerves. ROS build-up, cytotoxicity, 3-NT production, and possible peroxidation [2]. The RPE cell workstation is shielded from the CoCl2 (150 µM)-induced reduction in cell viability by ethyl ferulate (20-160 µM, 24 hours) [5]. 40 μM of ethanol ferulate activates Nrf-2 and decreases RPE cells in a 24-hour period.
ln Vivo
Ethyl ferulate (15-50 mg/kg, i.p., twice a day for 5 days) reduces the acute pulmonary damage caused by LPS in mice[3].[4]. In a mouse model of oxygen-induced retinopathy, ethyl ferulate (0.05-0.2 μg, intravitreal injection, 1 µl/eye) suppresses retinal neovascularization[5].
Cell Assay
Western Blot analysis [5]
Cell Types: RPE cells (induced by 150 μM CoCl2 for 12 h)
Tested Concentrations: 40 μM
Incubation Duration: 2 h
Experimental Results: Increased ROS production in Nrf- inhibited CoCl2-induced VEGFA expression [5]. 2 Expression and nuclear translocation. Keap-1 expression diminished, A and increased HO-1 and NQO-1 expression. Reduces hypoxia-induced HIF-1α and VEGFA expression.
Animal Protocol
Animal/Disease Models: LPS (0.5 mg/kg)-induced acute lung injury mouse model [3]
Doses: 15 and 30 mg/, 1 µL/eye ) blocks major neovascularization in mouse models of oxygen-induced effects [5]. kg
Route of Administration: intraperitoneal (ip) injection twice (two times) daily for 5 days
Experimental Results: diminished leukocyte infiltration. MPO activity, mRNA levels, and secretion of TNF-α and IL-6 were diminished.
References

[1]. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal. 2004 Oct;6(5):811-8.

[2]. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem. 2005 Feb;92(4):749-58.

[3]. Ethyl ferulate contributes to the inhibition of the inflammatory responses in murine RAW 264.7 macrophage cells and acute lung injury in mice. PLoS One. 2021 May 26;16(5):e0251578.

[4]. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin. 2021 Dec;42(12):2069-2081.

[5]. Protective effect of ethyl ferulate against hypoxic injury in retinal cells and retinal neovascularization in an oxygen-induced retinopathy model. Phytomedicine. 2023 Dec;121:155097.

Additional Infomation
Ethyl ferulate has been reported in Spiraea formosana, Coptis japonica, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H14O4
Molecular Weight
222.2372
Exact Mass
222.089
CAS #
4046-02-0
PubChem CID
736681
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
382.3±0.0 °C at 760 mmHg
Melting Point
63-65 °C(lit.)
Flash Point
132.5±17.2 °C
Vapour Pressure
0.0±0.9 mmHg at 25°C
Index of Refraction
1.566
LogP
1.94
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
5
Heavy Atom Count
16
Complexity
249
Defined Atom Stereocenter Count
0
SMILES
CCOC(=O)/C=C/C1=CC(=C(C=C1)O)OC
InChi Key
ATJVZXXHKSYELS-FNORWQNLSA-N
InChi Code
InChI=1S/C12H14O4/c1-3-16-12(14)7-5-9-4-6-10(13)11(8-9)15-2/h4-8,13H,3H2,1-2H3/b7-5+
Chemical Name
ethyl (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 100 mg/mL (~449.96 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.4996 mL 22.4982 mL 44.9964 mL
5 mM 0.8999 mL 4.4996 mL 8.9993 mL
10 mM 0.4500 mL 2.2498 mL 4.4996 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us