Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Approximately 20% of a dose of estragole, a naturally occurring flavoring agent, was excreted in the urine of outbred male CD-1 mice as a conjuage (presumably the glucuronide) of 1'-hydroxyestragole. ... Metabolism / Metabolites The present study investigates interindividual variation in liver levels of the proximate carcinogenic metabolite of estragole, 1'-hydroxyestragole, due to variation in two key metabolic reactions involved in the formation and detoxification of this metabolite, namely 1'-hydroxylation of estragole and oxidation of 1'-hydroxyestragole. Formation of 1'-hydroxyestragole is predominantly catalyzed by P450 1A2, 2A6, and 2E1, and results of the present study support that oxidation of 1'-hydroxyestragole is catalyzed by 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2). In a first approach, the study defines physiologically based biokinetic (PBBK) models for 14 individual human subjects, revealing a 1.8-fold interindividual variation in the area under the liver concentration-time curve (AUC) for 1'-hydroxyestragole within this group of human subjects. Variation in oxidation of 1'-hydroxyestragole by 17beta-HSD2 was shown to result in larger effects than those caused by variation in P450 enzyme activity. In a second approach, a Monte Carlo simulation was performed to evaluate the extent of variation in liver levels of 1'-hydroxyestragole that could occur in the population as a whole. This analysis could be used to derive a chemical-specific adjustment factor (CSAF), which is defined as the 99th percentile divided by the 50th percentile of the predicted distribution of the AUC of 1'-hydroxyestragole in the liver. The CSAF was estimated to range between 1.6 and 4.0, depending on the level of variation that was taken into account for oxidation of 1'-hydroxyestragole. Comparison of the CSAF to the default uncertainty factor of 3.16 for human variability in biokinetics reveals that the default uncertainty factor adequately protects 99% of the population. The extent of bioactivation of the herbal constituent estragole to its ultimate carcinogenic metabolite 1'-sulfooxyestragole depends on the relative levels of bioactivation and detoxification pathways. The present study investigated the kinetics of the metabolic reactions of both estragole and its proximate carcinogenic metabolite 1'-hydroxyestragole in humans in incubations with relevant tissue fractions. Based on the kinetic data obtained a physiologically based biokinetic (PBBK) model for estragole in human was defined to predict the relative extent of bioactivation and detoxification at different dose levels of estragole. The outcomes of the model were subsequently compared with those previously predicted by a PBBK model for estragole in male rat to evaluate the occurrence of species differences in metabolic activation. The results obtained reveal that formation of 1'-oxoestragole, which represents a minor metabolic route for 1'-hydroxyestragole in rat, is the main detoxification pathway of 1'-hydroxyestragole in humans. Due to a high level of this 1'-hydroxyestragole oxidation pathway in human liver, the predicted species differences in formation of 1'-sulfooxyestragole remain relatively low, with the predicted formation of 1'-sulfooxyestragole being two-fold higher in human compared with male rat, even though the formation of its precursor 1'-hydroxyestragole was predicted to be fourfold higher in human. Overall, it is concluded that in spite of significant differences in the relative extent of different metabolic pathways between human and male rat there is a minor influence of species differences on the ultimate overall bioactivation of estragole to 1'-sulfooxyestragole. 1. The metabolic fates of the naturally occurring food flavors trans-anethole and estragole, and their synthetic congener p-propylanisole, have been investigated in human volunteers using the [methoxy-(14)C]-labelled compounds. The doses used were close to those encountered in the diet, 1 mg, 100 micrograms and 100 micrograms respectively. 2. In each case, the major routes of elimination of (14)C were in the urine and in the expired air as (14)CO2. 3. Urinary metabolites were separated by solvent extraction, t.l.c. and h.p.l.c., and characterized by comparison of chromatographic mobilities with standards and by radioisotope dilution. Nine (14)C urinary metabolites were found after trans-anethole administration, four after p-propylanisole and five after estragole. All were products of side chain oxidations. 4. The principal metabolites of p-propylanisole were 4-methoxyhippuric acid (12%) and 1-(4'-methoxyphenyl)propan-1-ol (2%) and -2-ol (8%). 5. The major metabolite of trans-anethole was 4-methoxyhippuric acid (56% of dose), accompanied by much smaller amounts of the two isomers of 1-(4'-methoxyphenyl)propane-1,2-diol (together 3%). 6. After estragole administration, the two volunteers eliminated 0.2 and 0.4% of the dose respectively as 1'-hydroxyestragole. 7. The human metabolic data is discussed with reference to the comparative metabolic disposition of these compounds in the mouse and rat, species commonly used in their safety assessment. The metabolism of the potent carcinogen estragole was investigated in humans after consumption of fennel tea by analyses of its metabolites in blood plasma and urine. Stable isotope dilution assays based on LC-MS/MS detection revealed that 1'-hydroxylation of estragole happened very fast as the concentration of conjugated 1'-hydroxyestragole in urine peaked after 1.5 hr, whereas it was no longer detectable after 10 hr. Besides the formation of less than 0.41% conjugated 1'-hydroxyestragole of the estragole dose administered, the further metabolite p-allylphenol was generated from estragole in a higher percentage (17%). Both metabolites were also detected in blood plasma in less than 0.75-2.5 hr after consumption of fennel tea. In contrast to this, no estragole was present in these samples above its detection limit. From the results, it can be concluded that an excess of the major fennel odorant trans-anethole principally does not interfere with estragole metabolism, whereas influences on the quantitative composition of metabolites cannot be excluded. The presence of a sulfuric acid conjugate of estragole could not be confirmed, possibly due to its high reactivity and lability. For more Metabolism/Metabolites (Complete) data for 1-Methoxy-4-(2-propenyl)benzene (11 total), please visit the HSDB record page. |
---|---|
References | |
Additional Infomation |
Estragole can cause cancer according to an independent committee of scientific and health experts.
Estragole is a colorless liquid with odor of anise. Insoluble in water. Isolated from rind of persea gratissima grath. and from oil of estragon. Found in oils of Russian anise, basil, fennel turpentine, tarragon oil, anise bark oil. (NTP, 1992) Estragole is a phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. It has a role as a flavouring agent, an insect attractant, a plant metabolite, a genotoxin and a carcinogenic agent. It is an alkenylbenzene, a monomethoxybenzene and a phenylpropanoid. It is functionally related to a chavicol. Estragole has been reported in Cymbopogon martinii, Perilla frutescens, and other organisms with data available. See also: Anise Oil (part of); Tarragon (annotation moved to). Mechanism of Action Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that regulates cell signaling pathways. Its inactivation is correlated with tumor malignancy, possibly due to the effects on cell differentiation and malignant cell transformation. Therefore, it has been noted that PP2A could be a promising target for cancer therapy. In our previous study of the hepatocarcinogen estragole (ES), cell proliferation may be required to convert ES-specific DNA adducts to mutations. To explore the trigger for cell proliferation, gpt delta rats were administered ES by gavage at doses of 3, 30 and 300 mg/kg/day for 4 weeks. ES-induced cell proliferation and gene mutations were observed at only the high dose whereas ES-specific DNA adducts were detected in a dose-dependent manner. Western blot analyses revealed activation of the Akt and ERK pathways without activation of upstream regulators, such as c-Raf, PKC and, PI3K. Phosphorylation of the PP2A C subunit at Tyr307 was found along with phosphorylation of Src. The overall data might imply that PP2A inactivation is responsible for cell cycle progression through activation of the Akt and ERK pathways at high doses of ES. Based on gamma-H2AX immunohistochemistry and Western blot analysis for Rad51 protein, the resultant mutation spectra showed large deletion mutations that might result from double strand breaks of DNA. Thus, it is likely that inactivation of PP2A resulted in acceleration and exacerbation of gene mutations. We conclude that PP2A might contribute to an early stage of chemical carcinogenesis, suggesting that PP2A could be a molecular target of primary cancer prevention. |
Molecular Formula |
C10H12O
|
---|---|
Molecular Weight |
148.2017
|
Exact Mass |
148.088
|
CAS # |
140-67-0
|
PubChem CID |
8815
|
Appearance |
Colorless to light yellow liquid
|
Density |
0.9±0.1 g/cm3
|
Boiling Point |
216.0±0.0 °C at 760 mmHg
|
Flash Point |
81.1±0.0 °C
|
Vapour Pressure |
0.2±0.4 mmHg at 25°C
|
Index of Refraction |
1.505
|
LogP |
3.15
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
1
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
11
|
Complexity |
112
|
Defined Atom Stereocenter Count |
0
|
SMILES |
O(C([H])([H])[H])C1C([H])=C([H])C(=C([H])C=1[H])C([H])([H])C([H])=C([H])[H]
|
InChi Key |
ZFMSMUAANRJZFM-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C10H12O/c1-3-4-9-5-7-10(11-2)8-6-9/h3,5-8H,1,4H2,2H3
|
Chemical Name |
1-methoxy-4-prop-2-enylbenzene
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~674.76 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (16.87 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (16.87 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (16.87 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 6.7476 mL | 33.7382 mL | 67.4764 mL | |
5 mM | 1.3495 mL | 6.7476 mL | 13.4953 mL | |
10 mM | 0.6748 mL | 3.3738 mL | 6.7476 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.