yingweiwo

Duocarmycin TM

Alias: Duocarmycin TM; 157922-77-5; [(1S)-1-(chloromethyl)-5-hydroxy-1,2-dihydrobenzo[e]indol-3-yl]-(5,6,7-trimethoxy-1H-indol-2-yl)methanone; CBI-TMI; CHEMBL66051; SCHEMBL12596987; (1S)-1-(chloromethyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-1H,2H,3H-benzo[e]indol-5-ol;
Cat No.:V32572 Purity: ≥98%
Duocarmycin TM is a potent antibiotic with anti-tumor activity.
Duocarmycin TM
Duocarmycin TM Chemical Structure CAS No.: 157922-77-5
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Duocarmycin TM is a potent antibiotic with anti-tumor activity. Duocarmycin TM can induce sequence-selective alkylation of double-stranded DNA.
Biological Activity I Assay Protocols (From Reference)
Targets
DNA synthesis; antitumor antibiotic
ln Vitro
Duocarmycin TM (60 μM; 4 d; BJAB and WSU-DLCL2 cells) is a cytotoxic drug that inhibits tumor cell proliferation [1].
Cell Assay
Cell viability assay [1]
Cell Types: BJAB and WSU-DLCL2 Cell
Tested Concentrations: 60 μM
Incubation Duration: 4 days
Experimental Results: Inhibited tumor cell proliferation, the IC50 values of BJAB and WSU-DLCL2 cells were 0.153 μM and 0.079 μM respectively.
References

[1]. Immolation of p-Aminobenzyl Ether Linker and Payload Potency and Stability Determine the Cell-Killing Activity of Antibody-Drug Conjugates with Phenol-Containing Payloads. Bioconjug Chem. 2018 Feb 21;29(2):267-274.

Additional Infomation
The valine-citrulline (Val-Cit) dipeptide and p-aminobenzyl (PAB) spacer have been commonly used as a cleavable self-immolating linker in ADC design including in the clinically approved ADC, brentuximab vedotin (Adcetris). When the same linker was used to connect to the phenol of the cyclopropabenzindolone (CBI) (P1), the resulting ADC1 showed loss of potency in CD22 target-expressing cancer cell lines (e.g., BJAB, WSU-DLCL2). In comparison, the conjugate (ADC2) of a cyclopropapyrroloindolone (CPI) (P2) was potent despite the two corresponding free drugs having similar picomolar cell-killing activity. Although the corresponding spirocyclization products of P1 and P2, responsible for DNA alkylation, are a prominent component in buffer, the linker immolation was slow when the PAB was connected as an ether (PABE) to the phenol in P1 compared to that in P2. Additional immolation studies with two other PABE-linked substituted phenol compounds showed that electron-withdrawing groups accelerated the immolation to release an acidic phenol-containing payload (to delocalize the negative charge on the anticipated anionic phenol oxygen during immolation). In contrast, efficient immolation of LD4 did not result in an active ADC4 because the payload (P4) had a low potency to kill cells. In addition, nonimmolation of LD5 did not affect the cell-killing potency of its ADC5 since immolation is not required for DNA alkylation by the center-linked pyrrolobenzodiazepine. Therefore, careful evaluation needs to be conducted when the Val-Cit-PAB linker is used to connect antibodies to a phenol-containing drug as the linker immolation, as well as payload potency and stability, affects the cell-killing activity of an ADC.[1]
Solid-phase synthesis allowed the rapid generation of a peptide–drug conjugate. A peptide targeting the Thomsen-Friedenreich antigen (TFα) was conjugated to the alkylating subunit of the potent cytotoxin duocarmycin SA. The compound, containing a cathepsin B cleavable linker, was shown to be active and selective against TFα expressing tumor cell lines.https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00282
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H23CLN2O5
Molecular Weight
466.913525819778
Exact Mass
466.129
CAS #
157922-77-5
PubChem CID
394851
Appearance
Light yellow to yellow solid powder
LogP
4.6
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
5
Heavy Atom Count
33
Complexity
712
Defined Atom Stereocenter Count
1
SMILES
ClC[C@@H]1CN(C(C2=CC3C=C(C(=C(C=3N2)OC)OC)OC)=O)C2C=C(C3C=CC=CC=3C1=2)O
InChi Key
NRHDGIYFJJUFKN-CQSZACIVSA-N
InChi Code
InChI=1S/C25H23ClN2O5/c1-31-20-9-13-8-17(27-22(13)24(33-3)23(20)32-2)25(30)28-12-14(11-26)21-16-7-5-4-6-15(16)19(29)10-18(21)28/h4-10,14,27,29H,11-12H2,1-3H3/t14-/m1/s1
Chemical Name
[(1S)-1-(chloromethyl)-5-hydroxy-1,2-dihydrobenzo[e]indol-3-yl]-(5,6,7-trimethoxy-1H-indol-2-yl)methanone
Synonyms
Duocarmycin TM; 157922-77-5; [(1S)-1-(chloromethyl)-5-hydroxy-1,2-dihydrobenzo[e]indol-3-yl]-(5,6,7-trimethoxy-1H-indol-2-yl)methanone; CBI-TMI; CHEMBL66051; SCHEMBL12596987; (1S)-1-(chloromethyl)-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-1H,2H,3H-benzo[e]indol-5-ol;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 50 mg/mL (~107.09 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.35 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.35 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1417 mL 10.7087 mL 21.4174 mL
5 mM 0.4283 mL 2.1417 mL 4.2835 mL
10 mM 0.2142 mL 1.0709 mL 2.1417 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us