yingweiwo

Docosanol

Alias: NAA 422 Abreva Nacol-22-97 Nacol 22 97NAA-422 DocosanolNacol2297
Cat No.:V14924 Purity: ≥98%
Docosanol (Abreva; NAA-422) is an antiviral agent and a saturated-alcohol used to treat cold sore infections caused by the herpes simplex virus.
Docosanol
Docosanol Chemical Structure CAS No.: 661-19-8
Product category: Antiviral
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5g
10g
25g
50g
Other Sizes

Other Forms of Docosanol:

  • 1-Docosanol-d45 (1-Docosanol d45)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Docosanol (Abreva; NAA-422) is an antiviral agent and a saturated-alcohol used to treat cold sore infections caused by the herpes simplex virus. Docosanol inhibits an event prior to the expression of intermediate early gene products but subsequent to HSV attachment. It has been traditionally used as an emollient, emulsifier, and thickener in cosmetics, and nutritional supplement; inhibitor of lipid-enveloped viruses including herpes simplex.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Topical absorption has been shown to be minimal under conditions reflecting normal clinical use.
Absorption of docosanol has been shown to be minimal under conditions reflecting normal clinical use. Of 209 plasma samples taken from ten subjects 24 hours after a multi-day test, only one had a docosanol level above the quantitation limits (19 nanograms/mL).
Long chain alcohols were detected in developing rat brain at their highest level of 0.0109% of the total lipids at the age of 10 days and decreased to 0.0036% at the age of 40 days. They consited mainly of hexadecanol, octadecanol, octadecenol, eicosanol, docosanol, and tetracosanol.
A mixture of cis-9[1(-14)C] octadecenol and [1(-14)C] docosanol was injected into the brains of 19-day-old rats, and incorporation of radioactivity into brain lipids was determined after 3, 12, and 24 hr. Both alcohols were metabolized by the brain but at different rates; each was oxidized to the corresponding fatty acid, but oleic acid was more readily incorporated into polar lipids. Substantial amounts of radioactivity were incorporated into 18:1 alkyl and alk-1-enyl moieties of the ethanolamine phosphoglycerides and into 18:1 alkyl moieties of the choline phosphoglycerides. Even after the disappearance of the 18:1 alcohol from the substrate mixture (12 hr), the 22:0 alcohol was not used to any measurable extent for alkyl and alk-1-enylglycerol formation.
Metabolism / Metabolites
The 22-carbon fatty alcohol, n-docosanol, exhibits in vitro antiviral activity against several lipid-enveloped viruses including herpes simplex viruses 1 and 2 by a mechanism that interferes with normal viral entry into target cells. We previously reported that mammalian cells incorporate significant quantities of radiolabeled n-docosanol. Herein, we report that cells extensively metabolize the internalized fatty alcohol. This is evidenced by incorporation of up to 60% of cell-associated radiolabel into phospholipids that copurify with phosphatidylcholine and phosphatidylethanolamine. Analysis by chemical (Vitride) reduction suggests that a significant portion of n-docosanol is oxidized to n-docosanoic acid and then incorporated as an acyl group on polar lipids. A measurable amount of radiolabel, however, is resistant to Vitride reduction, consistent with incorporation of n-docosanol into ether lipids. The rate and extent of metabolic conversion of n-docosanol vary with the cell type and surfactant used to suspend the compound. Furthermore, the anti-HSV activity of n-docosanol is quantitatively proportional to the amount of metabolism observed. These findings suggest that the anti-HSV activity of n-docosanol involves cellular uptake and metabolism of the drug.
A mixture of cis-9[1(-14)C] octadecenol and [1(-14)C] docosanol was injected into the brains of 19-day-old rats. Both alcohols were metabolized by the brain but at different rates; each was oxidized to the corresponding fatty acid. Substantial amounts of radioactivity were incorporated into 18:1 alkyl and alk-1-enyl moieties of the ethanolamine phosphoglycerides and into 18:1 alkyl moieties of the choline phosphoglycerides.
References

[1]. Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10825-9.

[2]. Clinical efficacy of topical docosanol 10% cream for herpes simplex labialis: A multicenter, randomized, placebo-controlled trial. J Am Acad Dermatol. 2001 Aug;45(2):222-30.

[3]. The toxicity of behenyl alcohol. I. Genotoxicity and subchronic toxicity in rats and dogs. Regul Toxicol Pharmacol. 2002 Aug;36(1):69-79.

Additional Infomation
Docosan-1-ol is a long-chain primary fatty alcohol that is docosane substituted by a hydroxy group at position 1. It is a non-prescription medicine approved by the FDA to shorten healing time of cold sores. It has a role as a plant metabolite and an antiviral drug. It is a long-chain primary fatty alcohol and a docosanol.
Docosanol is a drug used for topical treatment for recurrent herpes simplex labialis episodes (episodes of cold sores or fever blisters). A saturated 22-carbon aliphatic alcohol, docosanol exhibits antiviral activity against many lipid enveloped viruses including herpes simplex virus (HSV). Docosanol inhibits fusion between the plasma membrane and the herpes simplex virus (HSV) envelope, thereby preventing viral entry into cells and subsequent viral replication.
Docosanol has been reported in Mandragora autumnalis, Hibiscus cannabinus, and other organisms with data available.
Docosanol is a saturated 22-carbon aliphatic alcohol with antiviral activity. Docosanol has a distinct mechanism of action and inhibits fusion between the plasma membrane and the herpes simplex virus envelope, thereby preventing viral entry into cells and subsequent viral activity and replication. Docosanol is used topically in the treatment of recurrent herpes simplex labialis episodes and relieves associated pain and may help heal sores faster.
Drug Indication
For the topical treatment of recurrent oral-facial herpes simplex episodes (cold sores or fever blisters).
FDA Label
Mechanism of Action
Docosanol works by inhibiting fusion between the human cell plasma membrane and the herpes simplex virus (HSV) envelope, thereby preventing viral entry into cells and subsequent viral replication. Unlike other cold-sore antivirals, docosanol does not act directly on the virus, and as such it is unlikely it will produce drug resistant mutants of HSV.
n-Docosanol-treated cells resist infection by a variety of lipid-enveloped viruses including the herpesviruses. Previous studies of the mechanism of action demonstrated that n-docosanol inhibits an event prior to the expression of intermediate early gene products but subsequent to HSV attachment. The studies reported here indicate that n-docosanol inhibits fusion of the HSV envelope with the plasma membrane. Evidence suggests that antiviral activity requires a time-dependent metabolic conversion of the compound. Cellular resistance to infection declines after removal of the drug with a t1/2 of approximately 3 h. Reduced expression of viral genes in n-docosanol-treated cells was confirmed by a 70% reduction in expression of a reporter gene regulated by a constitutive promoter inserted into the viral genome. Inhibited release in treated cells of virion-associated regulatory proteins--an immediate post entry event--was indicated by a 75% reduction in the expression of beta-galactosidase in target cells carrying a stably transfected lacZ gene under control of an HSV immediate--early promoter. Finally, the fusion-dependent dequenching of a lipophilic fluorescent probe, octadecyl rhodamine B chloride, inserted into the HSV envelope was significantly inhibited in treated cells. Inhibition of fusion between the plasma membrane and the HSV envelope, and the subsequent lack of replicative events, may be the predominant mechanism for the anti-HSV activity of n-docosanol.
Docosanol reduces viral replication and activity by effectively inhibiting the fusion between the plasma membrane and the herpes simplex virus envelope.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H46O
Molecular Weight
326.609
Exact Mass
326.354
CAS #
661-19-8
Related CAS #
1-Docosanol-d45
PubChem CID
12620
Appearance
White to off-white solid powder
Density
0.8±0.1 g/cm3
Boiling Point
375.9±5.0 °C at 760 mmHg
Melting Point
65-72 °C(lit.)
Flash Point
142.5±5.2 °C
Vapour Pressure
0.0±1.9 mmHg at 25°C
Index of Refraction
1.455
LogP
10.44
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
20
Heavy Atom Count
23
Complexity
190
Defined Atom Stereocenter Count
0
InChi Key
NOPFSRXAKWQILS-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H46O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23/h23H,2-22H2,1H3
Chemical Name
docosan-1-ol
Synonyms
NAA 422 Abreva Nacol-22-97 Nacol 22 97NAA-422 DocosanolNacol2297
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Ethanol : ~50 mg/mL (~153.09 mM)
DMSO :< 1 mg/mL H2O : < 0.1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.65 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH + stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0618 mL 15.3088 mL 30.6176 mL
5 mM 0.6124 mL 3.0618 mL 6.1235 mL
10 mM 0.3062 mL 1.5309 mL 3.0618 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us