yingweiwo

Diphenylterazine (DTZ)

Alias: DTZ; 2-benzyl-6,8-diphenylimidazo[1,2-a]pyrazin-3-ol; 2-Benzyl-6,8-diphenylimidazo[1,2-a]pyrazin-3(7H)-one; DTZ; Diphenylterazine (DTZ)?; 2-benzyl-6,8-diphenyl-7H-imidazo[1,2-a]pyrazin-3-one; SCHEMBL19912656; Diphenylterazine
Cat No.:V30820 Purity: ≥98%
Diphenylterazine(DTZ) is a novel bioluminescence agent that showed superior in vitro and in vivo sensitivity over commonly used bioluminescence reporters.
Diphenylterazine (DTZ)
Diphenylterazine (DTZ) Chemical Structure CAS No.: 344940-63-2
Product category: Fluorescent Dye
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Diphenylterazine (DTZ) is a novel bioluminescence agent that showed superior in vitro and in vivo sensitivity over commonly used bioluminescence reporters. As a Red-shifted bioluminescence reporter, it has the potential to be used for biological imaging.

Biological Activity I Assay Protocols (From Reference)
Targets
Bioluminescence agent
ln Vitro
Millimolar concentrations of diphenylterazine have negligible cytotoxic effects [1]. Diphenyltrazine has strong in vivo pharmacokinetics, red-shifted emission, a high quantum yield, and the absence of cofactors needed for light emission. Yeh AH (2023) designed a small and stable protein scaffold from scratch to make the size and shape of the pocket suitable for diphenyltetrazine using the multinuclear transport factor NTF2-like superfamily as the target topology and diphenyltrazine as the target substrate of luciferase. By removing luciferase with a high degree of selectivity, this technique overcomes the limitations of naturally occurring proteins. Although the substrate apex of the de novo designed luciferase is higher, its catalytic efficiency towards diphenyltetrazine (kcat/Km = 106/M/s) is similar to that of natural luciferase [2]. NOTE: To make a 30 mM DTZ stock solution with 5 mM L-ascorbic acid, dissolve 1 mg of DTZ in 88 μL of master mix after first making a premix by dissolving 17.6 mg of L-ascorbic acid in 10 mL of ethanol and 10 mL of 1,2-propanediol [3].
ln Vivo
Background emission is absent when diphenyltetrazine is injected into untransfected BALB/c electrodes. Extended kinetics are shown in the bioluminescence generated by intraperitoneal injection of diphenyltetrazine [1]. The xenograft NU/J tumor model can be used to track the growth of treatment with diphenyltetrazine (0.3 μMol/mouse; 1.13 mg.mL–1/100 μL/mouse) [4].
Enzyme Assay
De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds1,2, but has been limited by a lack of suitable protein structures and the complexity of native protein sequence-structure relationships. Here we describe a deep-learning-based 'family-wide hallucination' approach that generates large numbers of idealized protein structures containing diverse pocket shapes and designed sequences that encode them. We use these scaffolds to design artificial luciferases that selectively catalyse the oxidative chemiluminescence of the synthetic luciferin substrates diphenylterazine and 2-deoxycoelenterazine. The designed active sites position an arginine guanidinium group adjacent to an anion that develops during the reaction in a binding pocket with high shape complementarity. For both luciferin substrates, we obtain designed luciferases with high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on diphenylterazine (kcat/Km = 106 M-1 s-1) comparable to that of native luciferases, but a much higher substrate specificity. The creation of highly active and specific biocatalysts from scratch with broad applications in biomedicine is a key milestone for computational enzyme design, and our approach should enable generation of a wide range of luciferases and other enzymes.[2]
Cell Assay
Staining examples:
Example 1: Diphenylterazine may be used as a substrate for Antares2.
Method: For labeling of cells.
1. Add Diphenylterazine (500, 50, 5, and 0.5 μM) into the culture media containing PC3/CD63-Antares2 cells.
2. Image with a bioluminescence imaging system.

Example 2: Diphenylterazine (DTZ) may be used as a bioluminescence agent for bioluminescent imaging in vitro and in vivo.
Method: For in vivo usage.
1. Anesthetized animals.
2. Animals are anesthetized again after the first was anesthetized for 36 hours and add saline containing Diphenylterazine to the eye surface of animals (for eye studies). After being anesthetized for 48 hours, inject Diphenylterazine solution into both the left and the right legs by i.p./intraperitoneal injection (for skeletal muscle studies).

Example 3: Diphenylterazine may be used to track tumor growth in vivo.
Method: For in vivo usage.
1. Diphenylterazine (0.3 μM) is injected intravenously into testing animals.
2. Image with an in vivo imaging system for image.
Animal Protocol
Coelenterazine (CTZ)-utilizing marine luciferases and their derivatives have attracted significant attention because of their ATP-independency, fast enzymatic turnover, and high bioluminescence brightness. However, marine luciferases typically emit blue photons and their substrates, including CTZ and the recently developed diphenylterazine (DTZ), have poor water solubility, hindering their in vivo applications. Herein, we report a family of pyridyl CTZ and DTZ analogs that exhibit spectrally shifted emission and improved water solubility. Through directed evolution, we engineered a LumiLuc luciferase with broad substrate specificity. In the presence of corresponding pyridyl substrates (i.e., pyCTZ, 6pyDTZ, or 8pyDTZ), LumiLuc generates highly bright blue, teal, or yellow bioluminescence. We compared our LumiLuc-8pyDTZ pair with several benchmark reporters in a tumor xenograft mouse model. Our new pair, which does not need organic cosolvents for in vivo administration, surpasses other reporters by detecting early tumors. We further fused LumiLuc to a red fluorescent protein, resulting in a LumiScarlet reporter with further red-shifted emission and enhanced tissue penetration. LumiScarlet-8pyDTZ was comparable to Akaluc-AkaLumine, the brightest ATP-dependent luciferase-luciferin pair, for detecting cells in deep tissues of mice. In summary, we have engineered a new family of ATP-independent bioluminescent reporters, which will have broad applications because of their ATP-independency, excellent biocompatibility, and superior in vivo sensitivity.[4]
References

[1]. Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat Methods. 2017 Oct;14(10):971-974.

[2]. De novo design of luciferases using deep learning. Nature. 2023 Feb;614(7949):774-780.

[3]. Practical Notes for teLuc-DTZ and Antares2-DTZ (updated 07/29/2019).

[4]. ATP-Independent Bioluminescent Reporter Variants To Improve in Vivo Imaging. ACS Chem Biol. 2019 May 17;14(5):959-965.

Additional Infomation
Red-shifted bioluminescence reporters are desirable for biological imaging. We describe the development of red-shifted luciferins based on synthetic coelenterazine analogs and corresponding mutants of NanoLuc that enable bright bioluminescence. One pair in particular showed superior in vitro and in vivo sensitivity over commonly used bioluminescence reporters. We adapted this pair to develop a bioluminescence resonance-energy-based Antares reporter called Antares2, which offers improved signal from deep tissues.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H19N3O
Molecular Weight
377.437865495682
Exact Mass
377.152
Elemental Analysis
C, 79.55; H, 5.07; N, 11.13; O, 4.24
CAS #
344940-63-2
PubChem CID
135439143
Appearance
Orange to reddish brown solid powder
LogP
6
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
4
Heavy Atom Count
29
Complexity
510
Defined Atom Stereocenter Count
0
InChi Key
HYQVAZNNCBIZSK-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H19N3O/c29-25-21(16-18-10-4-1-5-11-18)27-24-23(20-14-8-3-9-15-20)26-22(17-28(24)25)19-12-6-2-7-13-19/h1-15,17,26H,16H2
Chemical Name
2-benzyl-6,8-diphenylimidazo[1,2-a]pyrazin-3(7H)-one
Synonyms
DTZ; 2-benzyl-6,8-diphenylimidazo[1,2-a]pyrazin-3-ol; 2-Benzyl-6,8-diphenylimidazo[1,2-a]pyrazin-3(7H)-one; DTZ; Diphenylterazine (DTZ)?; 2-benzyl-6,8-diphenyl-7H-imidazo[1,2-a]pyrazin-3-one; SCHEMBL19912656; Diphenylterazine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage.  (2). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Solubility in DMF : ~11.0 mg/mL (~29.0 mM, with sonication; Note: DMSO can inactivate the activity of Diphenylterazine)
Solubility in EtOH+HCl : ~1 mg/mL (~2.6 mM; with sonication and warming, and adjust pH to 2 with 1M HCl and heat to
80°C;Note: DMSO can inactivate the activity of Diphenylterazine)
Solubility in H2O : Insoluble (< 0.1 mg/mL; Note: DMSO can inactivate the activity of Diphenylterazine)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1.11 mg/mL (2.94 mM) (saturation unknown) in 10% DMF 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2 mg/mL (5.30 mM) in 50% PEG300 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6494 mL 13.2471 mL 26.4943 mL
5 mM 0.5299 mL 2.6494 mL 5.2989 mL
10 mM 0.2649 mL 1.3247 mL 2.6494 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us