yingweiwo

Dihydroresveratrol

Alias: Dihydroresveratrol; Di-hydroresveratrol; Dihydroresveratrol; 58436-28-5; 5-[2-(4-hydroxyphenyl)ethyl]benzene-1,3-diol; 3,4',5-Trihydroxybibenzyl; 5-(4-hydroxyphenethyl)benzene-1,3-diol; Dihydro-Resveratrol; CHEBI:4582; UNII-CBY43AY0TT; Di hydroresveratrol; DHRSV
Cat No.:V19911 Purity: ≥98%
Dihydroresveratrol is a potent phytoestrogen that is a hormone receptor modulator.
Dihydroresveratrol
Dihydroresveratrol Chemical Structure CAS No.: 58436-28-5
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Dihydroresveratrol is a potent phytoestrogen that is a hormone receptor modulator. Dihydroresveratrol promotes prostate and breast cancer/tumor cell growth/proliferation at picomolar and nanomolar concentrations.
Biological Activity I Assay Protocols (From Reference)
Targets
Natural phytoestrogen
ln Vitro
Prostate cancer cells PC-3 grow substantially more when treated with 0.1 nM-0.1 μM dihydroresveratrol [1].
Cell Assay
Background: Recent studies showed that moderate consumption of red or white wines increased the chances of breast cancer, while similar consumption of red wines, rich in trans-resveratrol (trans-R), decreased the rate of prostate cancer. This prompted us to explore the role of various forms of R in cancer proliferation. Results: Trans-R was found to be the most potent antiproliferative agent. Cis-R demonstrated somewhat less potency compared to trans-R. Unlike cis-R and trans-R, dihydro-R exhibits moderate proliferative effect on androgen-independent prostate cancer cell lines PC-3 and DU-145 at picomolar concentrations. At higher concentrations, dihydro-R caused proliferation inhibition, similar to cis-R and trans-R. The proliferative effect of dihydro-R at low concentrations can be reversed by trans-R which acts as a partial antagonist in the presence of dihydro-R. Mixtures of dihydro-R and trans-R demonstrated complex non-monotonic cross-modulation activity patterns. Conclusions: Dihydro-R exhibits proliferative effects in androgen-independent prostate cancer cells at picomolar and nanomolar concentrations. While the exact mechanism of these effects requires further evaluation, our preliminary results point to hormone receptor modulation activity. We also observed strong cross modulation between trans-R and dihydro-R at sub-picomolar concentrations. The role of dihydro-R in cancer proliferation related to moderate consumption of red wine remains an open question because dihydro-R has a very complex activity pattern in the presence of trans-R.[1]
References

[1]. Trans-, cis-, and dihydro-resveratrol: a comparative study. Chem Cent J. 2011 Dec 20;5:88.

Additional Infomation
Dihydroresveratrol is a stilbenol that is 1,1'-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4'. It has a role as a xenobiotic metabolite and a plant metabolite.
Dihydroresveratrol has been reported in Hydrangea serrata, Maackia amurensis, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H14O3
Molecular Weight
230.2592
Exact Mass
230.094
CAS #
58436-28-5
PubChem CID
185914
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
430.3±14.0 °C at 760 mmHg
Flash Point
210.9±14.7 °C
Vapour Pressure
0.0±1.1 mmHg at 25°C
Index of Refraction
1.662
LogP
2.51
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
3
Heavy Atom Count
17
Complexity
214
Defined Atom Stereocenter Count
0
InChi Key
HITJFUSPLYBJPE-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H14O3/c15-12-5-3-10(4-6-12)1-2-11-7-13(16)9-14(17)8-11/h3-9,15-17H,1-2H2
Chemical Name
5-[2-(4-Hydroxyphenyl)ethyl]benzene-1,3-diol
Synonyms
Dihydroresveratrol; Di-hydroresveratrol; Dihydroresveratrol; 58436-28-5; 5-[2-(4-hydroxyphenyl)ethyl]benzene-1,3-diol; 3,4',5-Trihydroxybibenzyl; 5-(4-hydroxyphenethyl)benzene-1,3-diol; Dihydro-Resveratrol; CHEBI:4582; UNII-CBY43AY0TT; Di hydroresveratrol; DHRSV
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~434.29 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (10.86 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (10.86 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (10.86 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.3429 mL 21.7146 mL 43.4292 mL
5 mM 0.8686 mL 4.3429 mL 8.6858 mL
10 mM 0.4343 mL 2.1715 mL 4.3429 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us