yingweiwo

Dibutyl maleate

Alias: DBM (VAN); AI3-00644; DIBUTYL MALEATE; 105-76-0; Butyl maleate; Staflex DBM; RC Comonomer DBM; Dibutylmaleate; Maleic acid, dibutyl ester; di-n-Butyl maleate; Dibutyl maleate
Cat No.:V19774 Purity: ≥98%
Dibutyl maleate is the diester of Maleic Acid and can be used as an intermediate in the preparation /synthesis of active molecules.
Dibutyl maleate
Dibutyl maleate Chemical Structure CAS No.: 105-76-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Dibutyl maleate is the diester of Maleic Acid and can be used as an intermediate in the preparation /synthesis of active molecules. Dibutyl maleate enhances contact sensitivity to fluorescein isothiocyanate in mice.
Biological Activity I Assay Protocols (From Reference)
Targets
Chemical intermediate
ln Vivo
Di-n-butyl phthalate (DBP), a phthalate ester, has been shown to have an adjuvant effect on fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse models. Dibutyl maleate /Di-n-butyl maleate (DBM), widely used as a plasticizer for industrial application, has been reported to cause dermatitis in humans. DBM is a butyl alcohol ester of di-carboxylic acid that represents a part of the DBP structure, while di-n-butyl fumarate (DBF) is a trans isomer of DBM. We examined whether DBM or DBF exhibits an adjuvant effect like DBP does. When BALB/c mice were epicutaneously sensitized with FITC in the presence of DBM or DBF, the FITC-specific CHS response was enhanced, as we have observed for DBP. As to underlying mechanisms, DBM and DBF facilitated the trafficking of FITC-presenting CD11c(+) dendritic cells (DCs) from skin to draining lymph nodes and increased the cytokine production by draining lymph nodes. In conclusion, DBM and DBF may have an effect that aggravates contact dermatitis through a skin sensitization process [1].
Toxicity/Toxicokinetics
rat LD50 oral 3700 mg/kg Raw Material Data Handbook, Vol.1: Organic Solvents, 1974., 2(19), 1975
mouse LD50 intraperitoneal 150 mg/kg National Technical Information Service., AD691-490
rabbit LD50 skin 10 gm/kg Raw Material Data Handbook, Vol.1: Organic Solvents, 1974., 2(19), 1975
References

[1]. Dibutyl Maleate and Dibutyl Fumarate Enhance Contact Sensitization to Fluorescein Isothiocyanate in Mice. Biol Pharm Bull. 2016;39(2):272-7.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H17N
Molecular Weight
211.3
Exact Mass
228.136
Elemental Analysis
C, 63.14; H, 8.83; O, 28.03
CAS #
105-76-0
Related CAS #
29014-72-0
PubChem CID
5271569
Appearance
Colorless to light yellow liquid(Density:0.988 g/cm3)
Density
1.0±0.1 g/cm3
Boiling Point
280.0±0.0 °C at 760 mmHg
Melting Point
-85°C
Flash Point
136.4±18.2 °C
Vapour Pressure
0.0±0.5 mmHg at 25°C
Index of Refraction
1.452
LogP
3.81
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
10
Heavy Atom Count
16
Complexity
209
Defined Atom Stereocenter Count
0
SMILES
O(C(/C(/[H])=C(/[H])\C(=O)OC([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]
InChi Key
JBSLOWBPDRZSMB-FPLPWBNLSA-N
InChi Code
InChI=1S/C12H20O4/c1-3-5-9-15-11(13)7-8-12(14)16-10-6-4-2/h7-8H,3-6,9-10H2,1-2H3/b8-7-
Chemical Name
dibutyl (Z)-but-2-enedioate
Synonyms
DBM (VAN); AI3-00644; DIBUTYL MALEATE; 105-76-0; Butyl maleate; Staflex DBM; RC Comonomer DBM; Dibutylmaleate; Maleic acid, dibutyl ester; di-n-Butyl maleate; Dibutyl maleate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~438.06 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (10.95 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (10.95 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (10.95 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.7326 mL 23.6630 mL 47.3261 mL
5 mM 0.9465 mL 4.7326 mL 9.4652 mL
10 mM 0.4733 mL 2.3663 mL 4.7326 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us