Size | Price | |
---|---|---|
Other Sizes |
Toxicity/Toxicokinetics |
Toxicity Data
LC50 (rat) = 159 mg/m3/6h Non-Human Toxicity Values LD50 Rat oral 400 mg/kg LC50 Rat inhalation 159 mg/cu m/6 hr LD50 Rat intraperitoneal 10 mg/kg LD50 Mouse intraperitoneal >800 mg/kg For more Non-Human Toxicity Values (Complete) data for Dicyclohexylcarbodiimide (6 total), please visit the HSDB record page. |
---|---|
Additional Infomation |
N,n'-dicyclohexylcarbodiimide is a white crystalline solid with a heavy sweet odor. (NTP, 1992)
1,3-dicyclohexylcarbodiimide is a carbodiimide compound having a cyclohexyl substituent on both nitrogen atoms. It has a role as a peptide coupling reagent, an ATP synthase inhibitor and a cross-linking reagent. A carbodiimide that is used as a chemical intermediate and coupling agent in peptide synthesis. (From Hawley's Condensed Chemical Dictionary, 12th ed) Mechanism of Action The molecular mechanism of the electroneutral organic cation/H+ antiporter in renal brush border membrane vesicles was studied utilizing the prototypic organic cation N1-methylnicotinamide. The hydrophobic carbodiimide, N,N'-dicyclohexylcarbodiimide (DCCD), inactivated organic cation transport irreversibly with an IC50 of 2.6 microM at pH 7.5 and 40 nM at pH 6.0. On the other hand, the hydrophilic reagents, 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, did not affect organic cation transport. Substrate did not affect the rate of the DCCD inactivation which followed pseudo-first-order-kinetics. A double logarithmic plot of the apparent rate constants vs. the DCCD concentration gave a straight line with a slope of 0.8. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of DCCD inactivates one carboxylate group per active transport unit and that the carboxylate group is critical for transport. The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys. Dicyclohexylcarbodiimide (DCCD) specifically inhibits the F1F0-H+-ATP synthase complex of Escherichia coli by covalently modifying a proteolipid subunit that is embedded in the membrane. Multiple copies of the DCCD-reactive protein, also known as subunit c, are found in the F1F0 complex. ... A spontaneous mutant of Methanothermobacter thermautotrophicus resistant toward the ATP-synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was isolated. DCCD normally inhibits methanogenic electron-transport-driven ATP synthesis, however, the DCCD-resistant strain exhibited methanogenesis in the presence of 300 micromol/L DCCD. Total ATP synthesis was shown to be higher in the mutant strain, both in the presence and absence of DCCD. These results suggested a modification in the ATP-synthesizing system of the mutant strain. Using Blue Native PAGE combined with MALDI TOF/TOF mass spectrometry, increased concentrations of both the A(1) and A(o) subcomplexes of the A(1)A(o)-type synthase were identified in the mutant strain. However, no alterations were found in the structural genes (atp) for the A(1)A(o) ATP synthase. The results imply that DCCD resistance is a consequence of increased A(1)A(o) ATP synthase expression, and suggest that genes involved in regulating synthase expression are responsible for DCCD resistance. |
Molecular Formula |
C13H22N2
|
---|---|
Molecular Weight |
206.3272
|
Exact Mass |
206.178
|
CAS # |
538-75-0
|
PubChem CID |
10868
|
Appearance |
Colorless to off-white <34°C powder,>35°C liquid
|
Density |
1.325
|
Boiling Point |
122-124 ºC (6 torr)
|
Melting Point |
34-35 °C(lit.)
|
Flash Point |
87 ºC
|
Vapour Pressure |
0.0±0.5 mmHg at 25°C
|
Index of Refraction |
1.567
|
LogP |
5.54
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
15
|
Complexity |
201
|
Defined Atom Stereocenter Count |
0
|
SMILES |
N(=C=NC1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H])C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H]
|
InChi Key |
QOSSAOTZNIDXMA-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C13H22N2/c1-3-7-12(8-4-1)14-11-15-13-9-5-2-6-10-13/h12-13H,1-10H2
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~484.66 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (12.12 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (12.12 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (12.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.8466 mL | 24.2330 mL | 48.4660 mL | |
5 mM | 0.9693 mL | 4.8466 mL | 9.6932 mL | |
10 mM | 0.4847 mL | 2.4233 mL | 4.8466 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.