yingweiwo

Cinnarizine

Alias: Dimitronal; Stugeron; Cinnarizine
Cat No.:V18356 Purity: ≥98%
Cinnarizine is an antihistamine and calcium channel blocker that promotes cerebral blood flow and may be utilized in study/research of stroke, post-traumatic brain symptoms, and cerebral arteriosclerosis.
Cinnarizine
Cinnarizine Chemical Structure CAS No.: 298-57-7
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes

Other Forms of Cinnarizine:

  • Cinnarizine D8
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Cinnarizine is an antihistamine and calcium channel blocker that promotes cerebral blood flow and may be utilized in study/research of stroke, post-traumatic brain symptoms, and cerebral arteriosclerosis.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Metabolism / Metabolites
Cinnarizine has known human metabolites that include 4-{3-[4-(diphenylmethyl)piperazin-1-yl]prop-1-en-1-yl}phenol, Benzophenone, 1-Benzhydrylpiperazine, 4-{phenyl[4-(3-phenylprop-2-en-1-yl)piperazin-1-yl]methyl}phenol, 1-Cinnamylpiperazine, and Cinnamaldehyde.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Cinnarizine is not approved for marketing in the United States by the U.S. Food and Drug Administration, but is available in other countries. No information is available on the use of cinnarizine during breastfeeding. Expert opinion recommends that cinnarizine not be used in migraine prophylaxis in nursing mothers. An alternate drug is preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Additional Infomation
Cinnarizine is a N-alkylpiperazine, a diarylmethane and an olefinic compound. It has a role as an antiemetic, a histamine antagonist, a calcium channel blocker, a muscarinic antagonist, an anti-allergic agent, a H1-receptor antagonist and a geroprotector.
First synthesized by Janssen Pharmaceuticals in 1955, cinnarizine is an anti-histaminic drug mainly used for the control of vestibular disorders and motion sickness. Cinnarizine is a specific calcium channel blocker that primarily works on the central vestibular system to interfere with the signal transmission between vestibular apparatus of the inner ear and the vomiting centre of the hypothalamus. Cinnarizine could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage), which happen mostly in brain. Combination use of cinnarizine with other nootropics, such as [piracetam] resulted in enhanced effect of boosting brain oxygen supply.
A piperazine derivative having histamine H1-receptor and calcium-channel blocking activity with vasodilating and antiemetic properties but it induces PARKINSONIAN DISORDERS.
Drug Indication
For the treatment of vertigo/meniere's disease, nausea and vomiting, motion sickness and also useful for vestibular symptoms of other origins.
Mechanism of Action
Cinnarizine inhibits contractions of vascular smooth muscle cells by blocking L-type and T-type voltage gated calcium channels. Cinnarizine has also been implicated in binding to dopamine D2 receptors, histamine H1 receptors, and muscarinic acetylcholine receptors.
Pharmacodynamics
Cinnarizine is an antihistamine and a calcium channel blocker. Histamines mediate a number of activities such as contraction of smooth muscle of the airways and gastrointestinal tract, vasodilatation, cardiac stimulation, secretion of gastric acid, promotion of interleukin release and chemotaxis of eosinophils and mast cells. Competitive antagonists at histamine H1 receptors may be divided into first (sedating) and second (non-sedating) generation agents. Some, such as Cinnarizine also block muscarinic acetylcholine receptors and are used as anti-emetic agents. Cinnarizine through its calcium channel blocking ability also inhibits stimulation of the vestibular system.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H28N2
Molecular Weight
368.51
Exact Mass
368.225
CAS #
298-57-7
Related CAS #
Cinnarizine-d8;1185242-27-6
PubChem CID
1547484
Appearance
White to off-white solid powder
Density
1.1±0.1 g/cm3
Boiling Point
509.2±38.0 °C at 760 mmHg
Melting Point
117-120ºC
Flash Point
229.8±14.6 °C
Vapour Pressure
0.0±1.3 mmHg at 25°C
Index of Refraction
1.626
LogP
4.63
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
6
Heavy Atom Count
28
Complexity
429
Defined Atom Stereocenter Count
0
SMILES
C1CN(CCN1C/C=C/C2=CC=CC=C2)C(C3=CC=CC=C3)C4=CC=CC=C4
InChi Key
DERZBLKQOCDDDZ-JLHYYAGUSA-N
InChi Code
InChI=1S/C26H28N2/c1-4-11-23(12-5-1)13-10-18-27-19-21-28(22-20-27)26(24-14-6-2-7-15-24)25-16-8-3-9-17-25/h1-17,26H,18-22H2/b13-10+
Chemical Name
1-benzhydryl-4-[(E)-3-phenylprop-2-enyl]piperazine
Synonyms
Dimitronal; Stugeron; Cinnarizine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~7.14 mg/mL (~19.38 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 0.71 mg/mL (1.93 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 7.1 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 0.71 mg/mL (1.93 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 7.1 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 0.71 mg/mL (1.93 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 7.1 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 12 mg/mL (32.56 mM) in 50% PEG300 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7136 mL 13.5682 mL 27.1363 mL
5 mM 0.5427 mL 2.7136 mL 5.4273 mL
10 mM 0.2714 mL 1.3568 mL 2.7136 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us