yingweiwo

Cinacalcet (AMG-073)

Alias: AMG-073; AMG 073; AMG073; Cinacalcet Hydrochloride; Sensipar; Cinacalcet HCl; Mimpara; Regpara; cinacalcet; cinacalcet hydrochloride; Hydrochloride; Cinacalcet; KRN1493; KRN-1493; KRN 1493
Cat No.:V3463 Purity: ≥98%
Cinacalcet (also known as AMG-073; trade names Sensipar, Mimpara) is a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor expressed in various human organ tissues.
Cinacalcet (AMG-073)
Cinacalcet (AMG-073) Chemical Structure CAS No.: 226256-56-0
Product category: CaSR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Cinacalcet (AMG-073):

  • Cinacalcet HCl (AMG-073)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Cinacalcet (also known as AMG-073; trade names Sensipar, Mimpara) is a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor expressed in various human organ tissues. This is a brand-new class of drugs for the management of hyperparathyroidism. By allosterically activating CaSR, cinacalcet, a type II calcimimetic agent, regulates the amount of calcium in cells. It can prevent the release of parathyroid hormone by activating CaSR in the parathyroid glands when calcium ions are present. Cinacalcet has been clinically used to treat patients with parathyroid carcinoma who have hypercalcemia or secondary hyperparathyroidism brought on by end-stage renal disease.

Biological Activity I Assay Protocols (From Reference)
Targets
CaR/Ca receptor
ln Vitro

In vitro activity: AMG-073 belongs to a novel class of drugs called calcimimetics that are used to treat hyperparathyroidism. These drugs decrease the production and secretion of parathyroid hormone (PTH) by making the parathyroid calcium-sensing receptor (CaR) more sensitive to extracellular calcium. Because AMG-073 mimics the effects of extracellular calcium to suppress PTH secretion even in the presence of hyperphosphatemia without running the risk of causing hyperphosphatemia or hypercalcemia, it has potential benefits as a therapy for secondary hyperparathyroidism. Human embryonic kidney cells expressing the CaSR exhibit a concentration-dependent rise in cytoplasmic calcium upon exposure to AMG-073. With an IC50 of 27 nM, AMG 073 (3 nM – 1 μM) causes a concentration-dependent drop in PTH levels in bovine parathyroid cells in a buffer containing 0.5 mM of calcium.

ln Vivo
AMG-073 orally administered to normal rats at doses of 1, 3, 10, and 30 mg/kg in 20% sulfobutyl ether β-cyclodextrin sodium causes a notable dose-dependent decrease in PTH levels that lasts for one to four hours. The 10- and 30-mg/kg doses of AMG-073 cause notable drops in PTH levels at 8 hours when compared to controls; these reductions disappear after 24 hours. After oral administration of AMG-073, 10, 30, and 40 mg/kg, respectively, there is a significant dose-dependent reduction in serum calcium levels at 4, 8, and 24 hours later. Only at the maximum dose of AMG-073 is a temporary drop in serum phosphorus levels seen. Furthermore, rats given 40 mg/kg of AMG-073 showed elevated calcitonin levels that correlated with PTH suppression. After oral administration of AMG-073, PTH and calcium levels rapidly decrease in five out of six nephrectomized rats, as they do in normal rats. Moreover, parathyroid weight is significantly decreased by oral AMG-073 at 5 and 10 mg/kg for 4 weeks when compared to controls.
Administration of Cinacalcet HCl (5 or 10 mg/kg) significantly reduced the number of PCNA-positive cells and decreased parathyroid weight compared with vehicle-treated 5/6 nephrectomized rats. There was no difference in apoptosis from cinacalcet HCl-treated or vehicle-treated animals. Serum PTH and blood ionized calcium levels decreased in cinacalcet HCl-treated animals compared with vehicle-treated controls. Conclusion: The results confirm previous work demonstrating that calcimimetic agents attenuate the progression of parathyroid hyperplasia in subtotally nephrectomized rats, extending earlier observations to now include cinacalcet HCl. These results support a role for the CaR in regulating parathyroid cell proliferation. Therefore, cinacalcet HCl may represent a novel therapy for improving the management of secondary HPT [1].
Calcimimetics, such as cinacalcet (Cin), increase the sensitivity of the CaR to Ca. The effects of Cin on UCa are complex and difficult to predict. We tested the hypothesis that Cin would alter urinary (U) Ca and supersaturation with respect to calcium hydrogen phosphate (CaHPO(4)) and calcium oxalate (CaOx). GHS or control rats were fed a normal Ca diet (0.6% Ca) for 28 days with Cin (30 mg/kg/24 h) added to the diet of half of each group for the last 14 days. The protocol was then repeated while the rats were fed a low Ca (0.02% Ca) diet. We found that Cin led to a marked reduction in circulating parathyroid hormone and a modest reduction in serum Ca. Cin did not alter UCa when the GHS rats were fed the normal Ca diet but lowered UCa when they were fed the low Ca diet. However, Cin did not alter U supersaturation with respect to either CaOx or CaHPO(4) on either diet. If these findings in GHS rats can be confirmed in man, it suggests that Cin would not be an effective agent in the treatment of human idiopathic hypercalciuria and resultant stone formation [2].
Enzyme Assay
The compounds were evaluated in CHO cells transfected with the hCaSR and a 6×TRE luciferase reporter system.12 Compounds were tested in dose response, with increasing calcium concentration. The increasing concentration of a positive allosteric modulator induces a dose proportional leftward shift of the hCaSR calcium responses. The values indicated in this paper correspond to an EC50 at 2 mM of calcium. The most active compounds were then tested in vivo for their ability to decrease PTH levels in normal rats. Our two starting points, R-568 and Fendiline, were active at 80 and 1000 nM, respectively, and led to compound 46, active at 60 nM. Cinacalcet was found at 80 nM in this assay.[PMID: 23465611] https://pubmed.ncbi.nlm.nih.gov/23465611/
Animal Protocol
The Apoptag System measures nuclear DNA fragmentation in situ to identify apoptosis in parathyroid glands from 5/6 nephrectomized or sham rats treated with Cinacalcet HCl (10 mg/kg) or vehicle. In summary, after being treated with vehicle or cinacalcet HCl, parathyroid gland sections from the animals are digested using 20 μg/mL proteinase K in 0.1 mol/L PBS at room temperature for 15 minutes.To block endogenous peroxidase, the samples are then incubated with 3% hydrogen peroxide/methanol for 5 minutes. To label exposed 3′-OH DNA ends with digoxigenin-tagged nucleotides, sections are incubated with terminal deoxynucleotidyl transferase (TdT) for 1 hour at 37°C. The immunoperoxidase method finds DNA that has been labeled with digoxigenin. The nuclei of apoptotic cells are stained brown, and sections are created using 3,3′-diaminobenzidine (DAB). When TdT is replaced with distilled water, the specificity for apoptosis is confirmed using negative staining.
Cinacalcet HCl dosing for 4 weeks [1]
Starting 6 weeks postsurgery, 5/6 nephrectomized (N = 35) and sham (N = 18) animals received orally either vehicle (20% captisol in water) (mL/kg) or Cinacalcet HCl (1, 5, or 10 mg/kg) for 4 weeks. Sampling for the determination of serum PTH and serum chemistries after the initiation of cinacalcet HCl treatment began at the 8-week time point (see Figures 4 and 5 ).
Apoptosis [2]
To identify apoptosis in parathyroid glands from 5/6 nephrectomized or sham rats treated with vehicle [phosphate-buffered saline (PBS)] or Cinacalcet HCl (10 mg/kg), nuclear DNA fragmentation was measured in situ using the Apoptag System. Briefly, parathyroid gland sections from animals treated with vehicle or cinacalcet HCl were digested with 20 μg/mL proteinase K in 0.1 mol/L PBS at room temperature for 15 minutes and incubated with 3% hydrogen peroxide/methanol for 5 minutes to block endogenous peroxidase. Sections were incubated for 1 hour at 37°C with terminal deoxynucleotidyl transferase (TdT) to label exposed 3′-OH DNA ends with digoxigenin-tagged nucleotides. Digoxigenin-labeled DNA was detected by the immunoperoxidase method. Sections were developed with 3,3′-diaminobenzidine (DAB), and the nuclei of apoptotic cells were stained brown. The specificity for apoptosis was verified by negative staining when distilled water was substituted for TdT.
Fourteen 67th generation female GHS rats and 14 female Sprague–Dawley Ctl rats, initially weighing on average 238 g, were placed in metabolic cages. From days 1 to 14, each rat in each group was fed 13 g/day of a NCD (0.6% Ca and 0.65% P, Harlan Teklad, Madison, WI, USA). We have previously shown that rats of this size completely consume this amount of diet on a daily basis.15, 17, 18, 19, 20 During the last 5 days of this period (day 10–14), five successive 24-h urine collections were obtained. Three (first, second, fourth) were collected in concentrated HCl (0.5 ml) for all measurements except for pH, uric acid, and chloride and two collections (third and fifth) were collected in the presence of thymol for measurement of pH, uric acid, and chloride. All samples were refrigerated at 4°C until measurement and all measurements were completed within 2 weeks.
From days 15 to 28, half of each group (seven GHS and seven Ctl rats), chosen at random, was continued on NCD without modification and the other half (seven GHS and seven Ctl rats) was fed NCD supplemented with Cinacalcet (30 mg/kg/day) (Amgen Inc., Thousand Oaks, CA, USA). This dose has been shown to significantly inhibit PTH in normal rats.36 In humans, the terminal half-life of Cinacalcet is 30–40 h and steady-state drug levels are reached in 7 days.36, 37 During the last 5 days of this period (day 24–28), five successive 24-h urine collections were obtained as during days 10–14.
From days 29 to 42, all GHS and Ctl rats were fed 13 g/day of a LCD (0.02% Ca and 0.65% P). No rat received Cinacalcet. LCD was utilized to remove the contribution of appreciable intestinal Ca absorption to UCa excretion. During the last 5 days of this period (day 38–42), five successive 24-h urine collections were obtained as during days 10–14. From days 43 to 56, half of each group (seven GHS and seven Ctl rats) was continued on LCD without modification and the other half (the same seven GHS and seven Ctl rats that had previously received Cinacalcet) was fed LCD supplemented with Cinacalcet (30 mg/kg/day). During the last 5 days of this period (day 52–56), five successive 24-h urine collections were obtained as during days 10–14.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Rapidly absorbed following oral administration.
Cinacalcet is metabolized by multiple enzymes, primarily CYP3A4, CYP2D6 and CYP1A2. Renal excretion of metabolites was the primary route of elimination of radioactivity.
1000 L
The metabolism and disposition of calcimimetic agent cinacalcet HCl was examined after a single oral administration to mice, rats, monkeys, and human volunteers. In all species examined, cinacalcet was well absorbed, with greater than 74% oral bioavailability of cinacalcet-derived radioactivity in monkeys and humans. In rats, cinacalcet-derived radioactivity was widely distributed into most tissues, with no marked gender-related differences. In all animal models examined, radioactivity was excreted rapidly via both hepatobiliary and urinary routes. In humans, radioactivity was cleared primarily via the urinary route (80%), with 17% excreted in the feces. Cinacalcet was not detected in the urine in humans. ...
After absorption, cinacalcet concentrations decline in a biphasic fashion with a terminal half life of 30 to 40 hours. Renal excretion of metabolites was the primary route of elimination of radioactivity. Approximately 80% of the dose was recovered in the urine and 15% in the feces.
Steady-state drug levels are achieved within 7 days. The mean accumulation ratio is approximately 2 with once-daily oral administration. The median accumulation ratio is approximately 2 to 5 with twice-daily oral administration. The AUC and Cmax of cinacalcet increase proportionally over the dose range of 30 to 180 mg once daily. The pharmacokinetic profile of cinacalcet does not change over time with once-daily dosing of 30 to 180 mg. The volume of distribution is high (approximately 1000 L), indicating extensive distribution. Cinacalcet is approximately 93% to 97% bound to plasma proteins. The ratio of blood cinacalcet concentration to plasma cinacalcet concentration is 0.8 at a blood cinacalcet concentration of 10 ng/mL.
After oral administration of cinacalcet, Cmax is achieved in approximately 2 to 6 hours. A food-effect study in healthy volunteers indicated that the Cmax and AUC were increased 82% and 68%, respectively, when cinacalcet was administered with a high-fat meal compared with fasting, Cmax and AUC of cinacalcet were increased 65% and 50%, respectively, when cinacalcet was administered with a low-fat meal compared with fasting.
For more Absorption, Distribution and Excretion (Complete) data for CINACALCET (6 total), please visit the HSDB record page.
Metabolism / Metabolites
Metabolism is hepatic by multiple enzymes, primarily CYP3A4, CYP2D6, and CYP1A2. After administration of a 75 mg radiolabeled dose to healthy volunteers, cinacalcet was rapidly and extensively metabolized via: 1) oxidative N-dealkylation to hydrocinnamic acid and hydroxy-hydrocinnamic acid, which are further metabolized via ß-oxidation and glycine conjugation; the oxidative N-dealkylation process also generates metabolites that contain the naphthalene ring; and 2) oxidation of the naphthalene ring on the parent drug to form dihydrodiols, which are further conjugated with glucuronic acid.
The metabolism and disposition of calcimimetic agent cinacalcet HCl was examined after a single oral administration to mice, rats, monkeys, and human volunteers. ... The primary routes of metabolism of cinacalcet were N-dealkylation leading to carboxylic acid derivatives (excreted in urine as glycine conjugates) and oxidation of naphthalene ring to form dihydrodiols (excreted in urine and bile as glucuronide conjugates). The plasma radioactivity in both animals and humans was primarily composed of carboxylic acid metabolites and dihydrodiol glucuronides, with <1% circulating radioactivity accounting for the unchanged cinacalcet. Overall, the circulating and excreted metabolite profile of cinacalcet in humans was qualitatively similar to that observed in preclinical animal models.
Cinacalcet is metabolized by multiple cytochrome P-450 (CYP) isoenzymes, mainly CYP3A4, CYP2D6, and CYP1A2, and is a potent inhibitor of CYP2D6 in vitro.
Rapidly and extensively metabolized hepatically by multiple enzymes, primarily CYP3A4, CYP2D6, and CYP1A2 via oxidative N-dealkylation to hydrocinnamic acid and hydroxy-hydrocinnamic acid which are further metabolized via beta-oxidation and glycine conjugations; the oxidative N-dealkylation process also generates metabolites that contains the naphthalene ring; and oxidation of the naphthalene ring on the parent drug to form dihydrodiols which are further conjugated with glucuronic aicd. The hydrocinnamic acid metabolite was shown to be inactive at concentrations up to 10 uM in a cell-based assay measuring calcium-receptor activation. The glucuronide conjugates formed after oxidation were shown to have a potency approximately 0.003 times that of cinacalcet in a cell-based assay measuring a calcimimetic response.
Biological Half-Life
Terminal half-life is 30 to 40 hours. The mean half-life of cinacalcet is prolonged by 33% and 70% in patients with moderate and severe hepatic impairment, respectively.
The mean half life of cinacalcet is prolonged by 33% and 70% in patients with moderate and severe hepatic impairment, respectively.
terminal half-life: 30 to 40 hours
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on cinacalcet during breastfeeding. However, several newborn infants with disorders of calcium metabolism have been safely treated with cinacalcet. Cinacalcet levels in milk are unlikely to be as high as the doses used in these case. If cinacalcet is required by the mother, it is not a reason to discontinue breastfeeding. Until more data are available, cinacalcet should only be used with careful infant monitoring during breastfeeding.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Approximately 93 to 97% bound to plasma proteins.
Interactions
Potential pharmacokinetic interaction (increased plasma concentrations of drugs metabolized principally by cytochrome P450 (CYP) isoenzyme 2D6). In patients receiving cinacalcet 25 or 100 mg concurrently with amitriptyline hydrochloride 50 mg, exposure to amitriptyline and its active metabolite, norrtiptyline, was increased by 20%. Dosage adjustment maybe required if cinacalcet is administered concomitantly with ta drug that has a narrow therapeutic index and is metabolized principally by CYP2D6 (e.g., flecainide, vinblastine, thioridazine, most tricyclic antidepressants).
Potential pharmacokinetic interaction (increased plasma cinacalcet concentrations) with potent CYP3A4 inhibitors (e.g. ketoconazole, erythromycin, itraconazole). Approximate 2.3-fold increase in cinacalcet exposure reported following concomitant administration of a single 90-mg dose of cinacalcet with ketoconazole (200 mg twice daily for 7 days). Cinacalcet dosage adjustment may be required and PTH and serum calcium concentrations should be closely monitored if a potent CYP3A4 inhibitor is initiated or discontinued.
References

[1]. Cinacalcet HCl attenuates parathyroid hyperplasia in a rat model of secondary hyperparathyroidism. Kidney Int. 2005 Feb;67(2):467-76.

[2]. Effect of cinacalcet on urine calcium excretion and supersaturation in genetic hypercalciuric stone-forming rats. Kidney Int. 2006 May;69(9):1586-92.

Additional Infomation
Therapeutic Uses
Cinacalcet is indicated for the treatment of hypercalcemia in patients with parathyroid carcinoma. /Included in US product labeling/
Cinacalcet is indicated for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on dialysis. /Included in US product labeling/
Cinacalcet is used for the treatment of secondary hyperparathyroidism associated with chronic renal disease in patients who are undergoing hemodialysis or peritoneal dialysis; safety and efficacy in patients who are not undergoing dialysis have not been established. Cinacalcet may be used alone or in conjunction with vitamin D analogs and/or phosphate binders.
Drug Warnings
In 3 clinical studies of chronic kidney disease (CKD) patients on dialysis, 5% of the patients in the cinacalcet and placebo groups reported a history of seizure disorder at baseline. During the trials, seizures (primarily generalized or tonic-clonic) were observed in 1.4% of cinacalcet-treated patients and 0.4% of placebo-treated patients. Five of the 9 cinacalcet-treated patients had a history of seizure disorder and 2 were receiving antiseizure medication at the time of their seizure. Both placebo-treated patients had a history of seizure disorder and were receiving antiseizure medication at the time of their seizure. While the basis for the reported difference in seizure rate is not clear, the threshold for seizures is lowered by significant reductions in serum calcium levels. Therefore, closely monitor serum calcium levels in patients receiving cinacalcet, particularly in patients with a history of a seizure disorder.
Studies in rats have shown that cinacalcet is excreted in the milk with a high milk-to-plasma ratio. It is not known whether this drug is excreted in human milk. Considering these data in rats and because many drugs are excreted in human milk and there is potential for clinically significant adverse reactions in infants, decide whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the lactating woman.
FDA Pregnancy Risk Category: C /RISK CANNOT BE RULED OUT. Adequate, well controlled human studies are lacking, and animal studies have shown risk to the fetus or are lacking as well. There is a chance of fetal harm if the drug is given during pregnancy; but the potential benefits may outweigh the potential risk./
Cinacalcet decreases serum calcium concentrations, and therefore patients should be carefully monitored for the occurrence of hypocalcemia. Cinacalcet should not be initiated if the serum calcium concentration is below the lower limit of normal (8.4 mg/dL).
For more Drug Warnings (Complete) data for CINACALCET (10 total), please visit the HSDB record page.
Pharmacodynamics
Cinacalcet is a drug that acts as a calcimimetic (i.e. it mimics the action of calcium on tissues). Secondary hyperparathyroidism (HPT) in patients with chronic kidney disease (CKD) is a progressive disease, associated with increases in parathyroid hormone (PTH) levels and derangements in calcium and phosphorus metabolism. Increased PTH stimulates osteoclastic activity resulting in cortical bone resorption and marrow fibrosis. The goals of treatment of secondary hyperparathyroidism are to lower levels of PTH, calcium, and phosphorus in the blood, in order to prevent progressive bone disease and the systemic consequences of disordered mineral metabolism. In CKD patients on dialysis with uncontrolled secondary HPT, reductions in PTH are associated with a favorable impact on bone-specific alkaline phosphatase (BALP), bone turnover and bone fibrosis. Cinacalcet reduces calcium levels by increasing the sensitivity of the calcium sensing receptor to extracellular calcium.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H22F3N
Molecular Weight
357.41
Exact Mass
357.17
Elemental Analysis
C, 73.93; H, 6.20; F, 15.95; N, 3.92
CAS #
226256-56-0
Related CAS #
Cinacalcet hydrochloride; 364782-34-3; Cinacalcet-d3 hydrochloride; Cinacalcet-d3; 848608-66-2 [Cinacalcet (m2a-glu)]
PubChem CID
156419
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
440.9±45.0 °C at 760 mmHg
Flash Point
220.5±28.7 °C
Vapour Pressure
0.0±1.1 mmHg at 25°C
Index of Refraction
1.563
LogP
5.74
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
6
Heavy Atom Count
26
Complexity
422
Defined Atom Stereocenter Count
1
SMILES
C[C@H](C1=CC=CC2=CC=CC=C21)NCCCC3=CC(=CC=C3)C(F)(F)F
InChi Key
VDHAWDNDOKGFTD-MRXNPFEDSA-N
InChi Code
InChI=1S/C22H22F3N/c1-16(20-13-5-10-18-9-2-3-12-21(18)20)26-14-6-8-17-7-4-11-19(15-17)22(23,24)25/h2-5,7,9-13,15-16,26H,6,8,14H2,1H3/t16-/m1/s1
Chemical Name
N-[(1R)-1-naphthalen-1-ylethyl]-3-[3-(trifluoromethyl)phenyl]propan-1-amine
Synonyms
AMG-073; AMG 073; AMG073; Cinacalcet Hydrochloride; Sensipar; Cinacalcet HCl; Mimpara; Regpara; cinacalcet; cinacalcet hydrochloride; Hydrochloride; Cinacalcet; KRN1493; KRN-1493; KRN 1493
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~10 mM
Water: <1 mg/mL
Ethanol: N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.75 mg/mL (7.69 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.75 mg/mL (7.69 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.75 mg/mL (7.69 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 30% PEG400+0.5% Tween80+5% Propylene glycol : 30mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7979 mL 13.9895 mL 27.9791 mL
5 mM 0.5596 mL 2.7979 mL 5.5958 mL
10 mM 0.2798 mL 1.3990 mL 2.7979 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
A Study to Evaluate the Effect of ASP7991 in Secondary Hyperparathyroidism Patients Undergoing Hemodialysis
CTID: NCT02133404
Phase: Phase 2    Status: Completed
Date: 2024-11-06
Novel Combination Therapy for Osteoporosis in Men
CTID: NCT03994172
Phase: Phase 4    Status: Active, not recruiting
Date: 2024-08-19
Primary Hyperparathyroidism: Short-term Calcimimetics Treatment - Relevance for Parathyroid Surgery Decisions?
CTID: NCT02227264
Phase: N/A    Status: Completed
Date: 2024-08-06
Parathyroid Hormone Level and Growth in Pediatric Patients With ESRD on Regular Hemodialysis
CTID: NCT05926570
Phase: Phase 4    Status: Completed
Date: 2024-01-24
A Study of SHR6508 in Secondary Hyperparathyroidism
CTID: NCT05663411
Phase: Phase 2    Status: Unknown status
Date: 2023-06-18
View More

Evaluating Alternative Medical Therapies in Primary Hyperparathyroidism
CTID: NCT02525796
Phase: Phase 2/Phase 3    Status: Completed
Date: 2023-05-03


Renal Osteodystrophy: An Individual Management Approach
CTID: NCT02440581
Phase: N/A    Status: Completed
Date: 2023-01-05
E.V.O.L.V.E. Trial™: EValuation Of Cinacalcet Hydrochloride (HCl) Therapy to Lower CardioVascular Events
CTID: NCT00345839
Phase: Phase 3    Status: Completed
Date: 2022-11-07
Cinacalcet Versus Parathyroidectomy in Peritoneal Dialysis Patients
CTID: NCT01447368
Phase: Phase 4    Status: Completed
Date: 2021-10-12
Treatment of Primary Hyperparathyroidism With Denosumab and Cinacalcet.
CTID: NCT03027557
Phase: Phase 3    Status: Completed
Date: 2021-05-25
Head-to-Head Study of Etelcalcetide and Cinacalcet in Asian Hemodialysis Patients With Secondary Hyperparathyroidism (SHPT)
CTID: NCT03299244
Phase: Phase 3    Status: Completed
Date: 2021-04-30
Using Cinacalcet to Treat the Hypophosphatemia of Early Kidney Transplant
CTID: NCT01011114
Phase: N/A    Status: Terminated
Date: 2021-04-23
Effect of Cinacalcet on Parathyroid Hormone Secretion in Children and Adolescents With Hypophosphatemic Rickets
CTID: NCT00195936
Phase: Phase 1    Status: Completed
Date: 2021-01-19
Calcimimetics in Hypophosphatemic Rickets
CTID: NCT00844740
Phase: N/A    Status: Withdrawn
Date: 2020-12-17
Bone Markers and Bone Density Changes in Hyperperparathyroid Dialysis Patients Under Cinacalcet Treatment
CTID: NCT04637360
Phase: N/A    Status: Completed
Date: 2020-11-19
Extension Study of Cinacalcet for Treatment of Secondary Hyperparathyroidism (SHPT) in Pediatric Patients With Chronic Kidney Disease on Dialysis
CTID: NCT02341417
Phase: Phase 3    Status: Completed
Date: 2020-06-29
Pediatric Chronic Kidney Disease Safety and Efficacy
CTID: NCT01277510
Phase: Phase 3    Status: Terminated
Date: 2020-06-29
Study to Evaluate Cinacalcet in Children With Chronic Kidney Disease
CTID: NCT01290029
Phase: Phase 1    Status: Completed
Date: 2020-06-17
Interaction Between a Calcimimetic Agent and the Renin Angiotensine Aldosterone System
CTID: NCT01519037
Phase: N/A    Status: Completed
Date: 2020-03-05
Head-to-Head Study of Etelcalcetide (AMG 416) and Cinacalcet
CTID: NCT01896232
Phase: Phase 3    Status: Completed
Date: 2019-07-18
Safety, Tolerability, and Clinical Effects of Twice-daily Doses of Cinacalcet (AMG 073) in Adults With Primary Hyperparathyroidism (HPT)
CTID: NCT03776058
Phase: Phase 2    Status: Completed
Date: 2018-12-14
Safety, Pharmacokinetics, and Clinical Effects of Cinacalcet (AMG 073) in Primary Hyperparathyroidism
CTID: NCT03774771
Phase: Phase 2    Status: Completed
Date: 2018-12-13
Efficacy and Safety Study of Cinacalcet for the Treatment of Hypercalcemia in Patients With Primary Hyperparathyroidism Unable to Undergo Parathyroidectomy
CTID: NCT00975221
Phase: Phase 3    Status: Completed
Date: 2018-10-17
20070360 Incident Dialysis
CTID: NCT00803712
Phase: Phase 4    Status: Completed
Date: 2018-10-17
Compare the Efficacy of Cinacalcet vs Traditional Vitamin D for Secondary Hyperparathyroidism (SHPT) Among Subjects Undergoing Hemodialysis
CTID: NCT01181531
Phase: Phase 4    Status: Completed
Date: 2018-10-17
Treatment of Autonomous Hyperparathyroidism in Post Renal Transplant Recipients
CTID: NCT00975000
Phase: Phase 3    Status: Completed
Date: 2018-10-17
PRIMARA: A Prospective Descriptive Observational Study to Review Mimpara (Cinacalcet) Use in Patients With Primary Hyperparathyroidism in Clinical Practice
CTID: NCT00928408
Phase:    Status: Completed
Date: 2018-08-01
Phase 2 Study of KHK7580
CTID: NCT02216656
Phase: Phase 2    Status: Completed
Date: 2018-07-10
Phase 3 Study of KHK7580
CTID: NCT02549391
Phase: Phase 2/Phase 3    Status: Completed
Date: 2017-03-24
Nicotinamide Versus Sevelamer Hydrochloride on Phosphatemia Control on Chronic Hemodialysed Patients
CTID: NCT0101
Primary hyperparathyroidism: Short-term calcimimetics treatment – Relevance for parathyroid surgery decisions?
CTID: null
Phase: Phase 3    Status: Completed
Date: 2013-02-15
A Randomized, Double-Blind, Placebo-Controlled Study to Assess the
CTID: null
Phase: Phase 3    Status: Completed, Prematurely Ended
Date: 2011-07-21
Use of Calcimimetics vs oral Paricalcitol in Renal transplant Patients affected with Persistent Secondary Hyperparathyroidism. A pilot study
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2011-01-28
An Open-Label, Single-Dose Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Cinacalcet HCl in Pediatric Subjects Aged 28 Days to < 6 Years with Chronic Kidney Disease Receiving Dialysis
CTID: null
Phase: Phase 1    Status: Completed
Date: 2010-11-12
VARIATION OF PARATHYROID GLAND FOLLOWING CINACALCET USE IN DIALISYS PATIENTS WITH SONOGRAPHIC EVIDENCE OF SECONDARY HYPERPLASIA
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2010-06-04
Efficacy and safety of the calcimimetic Cinacalcet in the management of patients with Primary Hyperparathyroidism due to a MEN-1 mutation
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2010-04-23
A Randomized Double-blind Placebo-controlled Study to Evaluate the Efficacy and Safety of Cinacalcet for the Treatment of Hypercalcemia in Subjects With Primary Hyperparathyroidism Unable to Undergo Parathyroidectomy
CTID: null
Phase: Phase 3    Status: Completed
Date: 2010-02-05
Etude pilote d'évaluation du test du freination de la sécrétion de l'hormone parathyroïdienne par le Cinacalcet (MIMPARA). Comparaisons : 1/ avec les résultats du test de charge calcique intra-veineux chez l'homme sain, 2/ entre le témoin sain et le patient atteint d'hyperparathyroïdie primaire
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2010-01-22
Phase 2/3, twelve-month, multicenter, intra-subjectcontrolled
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2009-11-23
The IMPACT SHPT Study: Study to Evaluate the Improved Management of iPTH with Paricalcitol-centered Therapy vs. Cinacalcet Therapy with Low-dose Vitamin D in Hemodialysis Patients with Secondary Hyperparathyroidism
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-11-03
A Randomized, Double-blind, Placebo-controlled Study to Evaluate the Efficacy and Safety of Using Cinacalcet to Correct Hypercalcemia in Renal Transplant Recipients With Autonomous Hyperparathyroidism.
CTID: null
Phase: Phase 3    Status: Completed, Prematurely Ended
Date: 2009-10-16
open, non comparative, prospectic, phase IV clinical study to evaluate the activity and tolerance of Cinacalcet-HCl (drug name Mimpara) in patients affected by MEN1-associated primary hyperparathyroidism
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2009-06-18
Estudio prospectivo, randomizado para comparar paratiroidectomía subtotal versus cinacalcet en el tratamiento del hiperparatiroidismo secundario persistente post trasplante renal.
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-03-24
TREATMENT OF HYPERPARATHYROIDISM IN PATIENTS WITH MULTIPLE ENDOCRINE NEOPLASIA TYPE 1 (MEN1) WITH THE CALCIMIMETIC AGENT CINACALCET
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2009-03-05
Randomized Trial to Evaluate the Efficacy and Safety of Cinacalcet Treatment in Combination with Low Dose Vitamin D for the Treatment of Subjects with Secondary Hyperparathyroidism (SHPT) Recently Initiating Hemodialysis
CTID: null
Phase: Phase 4    Status: Completed
Date: 2008-12-17
ADVANCE - A Randomized Study to Evaluate the Effects of Cinacalcet Plus Low Dose Vitamin D on Vascular Calcification in Subjects with Chronic Kidney Disease (CKD) Receiving Hemodialysis
CTID: null
Phase: Phase 4    Status: Completed
Date: 2006-10-23
EVOLVE - Evaluation Of Cinacalcet HCl Therapy to Lower Cardiovascular Events
CTID: null
Phase: Phase 3    Status: Completed
Date: 2006-10-04
Bone Histomorphometry Assessment For Dialysis Patients with Secondary Hyperparathyroidism of End Stage Renal Disease
CTID: null
Phase: Phase 2    Status: Completed
Date: 2006-03-14
A Randomized, Double-blind, Placebo-controlled Study to Assess the Efficacy and Safety of Cinacalcet HCl in Chronic Kidney Disease Subjects with Secondary Hyperparathyroidism Not Receiving Dialysis
CTID: null
Phase: Phase 3    Status: Completed, Ongoing, Prematurely Ended
Date: 2005-02-11
Study to Investigate Cinacalcet Treatment in Haemodialysis Patients with Secondary Hyperparathyroidism
CTID: null
Phase: Phase 3    Status: Completed
Date: 2004-11-17
An Open-label, Single-arm Study to Assess the Safety and Tolerability of Cinacalcet HCl in Addition to Standard of Care in Pediatric Subjects Age 28 Days to < 6 Years with Chronic Kidney Disease and Secondary Hyperparathyroidism Receiving Dialysis
CTID: null
Phase: Phase 2    Status: Temporarily Halted, Completed
Date:

Biological Data
  • Kidney Int . 2006 May;69(9):1586-92.
Contact Us