Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
Cerdulatinib (formerly known as PRT2070 and PRT062070) is an oral bioactive, dual-targeted tyrosine kinase (JAK and Syk) inhibitor with IC50 of 12 nM/6 nM/8 nM/0.5 nM and 32 nM for JAK1/JAK2/JAK3/TYK2 and Syk [spleen tyrosine kinase (SYK) and Janus kinase (JAK)], respectively. The heterogeneity and severity of certain autoimmune diseases and B-cell malignancies warrant simultaneous targeting of multiple disease-relevant signaling pathways. Dual inhibition of spleen tyrosine kinase (SYK) and Janus kinase (JAK) represents such a strategy and may elicit several benefits relative to selective kinase inhibition, such as gaining control over a broader array of disease etiologies, reducing probability of selection for bypass disease mechanisms, and the potential that an overall lower level suppression of individual targets may be sufficient to modulate disease activity. Cerdulatinib also inhibits 19 other tested kinases with IC50 less than 200 nM. It is currently being studied in patients with genetically-defined hematologic cancers, as well as for patients who have failed therapy due to relapse or acquired mutations.
Targets |
IC50: Tyk2: 0.5 nM; JAK2: 6 nM; JAK3: 8 nM ; JAK1:12 nM; Syk:32 nM; MST1:4 nM; ARK5:4 nM; MLK1:5 nM ; FMS:5 nM; AMPK:6 nM; TBK1:10 nM; MARK1:10 nM; PAR1B-a:13 nM; TSSK:14 nM; MST2:15 nM ; GCK:18 nM; JNK3:18 nM; Rsk2:20 nM; Rsk4:28 nM; CHK1:42 nM; Flt4:51 nM; Flt3:90 nM; Ret:105 nM ; Itk:194 nM
|
||
---|---|---|---|
ln Vitro |
The inhibitory impact of cerulelatinib ranges from 0.37 to 10.02 µM on 60 CLL. Cerdulatinib promotes apoptosis in CLL in conjunction with PARP breakage and MCL-1 down-regulation. Cerdulatinib (2µM) can cause CLL cell death by overriding the microenvironment's support. Primary CLL cells that are both ibrutinib-sensitive and -resistant are prevented from proliferating by cerulelatinib (250–500 nM). In addition, ceruleanib inhibits the growth of BTKC481S-transfected cell lines, ibrutinib-sensitive and ibrutinib-resistant primary CLL cells, as well as the BCR and JAK-STAT signaling pathways. Moreover, cerdulatinib's suppression of SYK and JAK results in the downstream inhibition of ERK and AKT. The NF-kB pathway is inhibited by cerulelatinib[1]. The early activation marker CD69's (IC50=0.11 µM) capacity to increase its cell-surface expression is diminished by PRT062070 in activated B cells. Differential efficacy against cytokine JAK/STAT signaling pathways is demonstrated by PRT062070. BCR-signaling competent NHL cell lines undergo apoptosis when exposed to 1 or 3 µM of PRT062070[2]. Cerdulatinib exhibits inhibitory action against DLBCL cells of both the ABC and GCB classes. Through caspase 3 and PARP cleavage, ceruleanib also causes apoptosis in the DLBCL cell lines belonging to the GCB and ABC classes. Additionally, cerdulatinib inhibits the cell cycle in the DLBCL ABC and GCB subtypes by downregulating cyclin E and RB phosphorylation. In all DLBCL cell lines, ceruleaninb causes apoptosis and cell cycle arrest in response to BCR stimulation. Moreover, cerdulatinib inhibits BCR and JAK/STAT signaling in GCB DLBCL and ABC cell lines. Cerdulatinib causes primary human DLBCL samples to undergo cell death[3]. In a dose-dependent manner, cerulelatinib mostly suppresses BCR-induced signals between 0.3 and 1 μM. and especially in IGHV-unmutated samples that express larger levels of sIgM, CD49d+, or ZAP70+, or that have stronger BCR signaling capacity and responsiveness to IL4. By inhibiting the induction of MCL-1 and BCL-XL, cerulelatinib circumvents the protective effects of anti-IgM, IL4/CD40L, or NLC; BCL-2 expression remains unchanged. Moreover, cerdulatinib and venetoclax work together in vitro to elicit more apoptosis in samples treated with IL4/CD40L than either medication alone[4].
|
||
ln Vivo |
While there is a nonstatistically significant trend toward decreased ankle inflammation with PRT062070 (0.5 mg/kg), the 1.5, 3, and 5 mg/kg doses result in significant reductions in inflammation. The production of anticollagen antibodies is impacted by PRT062070. Following oral administration in mice, PRT062070 (15 mg/kg) inhibits BCR signaling and activation in the spleen and suppresses upregulation of splenic B-cell surface CD80/86 and CD69[2].
|
||
Enzyme Assay |
The heterogeneity and severity of certain autoimmune diseases and B-cell malignancies warrant simultaneous targeting of multiple disease-relevant signaling pathways. Dual inhibition of spleen tyrosine kinase (SYK) and Janus kinase (JAK) represents such a strategy and may elicit several benefits relative to selective kinase inhibition, such as gaining control over a broader array of disease etiologies, reducing probability of selection for bypass disease mechanisms, and the potential that an overall lower level suppression of individual targets may be sufficient to modulate disease activity. To this end, we provide data on the discovery and preclinical development of PRT062070 [4-(cyclopropylamino)-2-({4-[4-(ethylsulfonyl)piperazin-1-yl]phenyl}amino)pyrimidine-5-carboxamide hydrochloride], an orally active kinase inhibitor that demonstrates activity against SYK and JAK. Cellular assays demonstrated specific inhibitory activity against signaling pathways that use SYK and JAK1/3. Limited inhibition of JAK2 was observed, and PRT062070 did not inhibit phorbol 12-myristate 13-acetate–mediated signaling or activation in B and T cells nor T-cell antigen receptor–mediated signaling in T cells, providing evidence for selectivity of action[2].
|
||
Cell Assay |
Cell metabolic activity, cell growth and viability determination[1]
DLBCL cell lines were treated with various concentrations of cerdulatinib for up to 72 h. The metabolic activities of cells were determined with MTT assay according to manufacturer's instruction at 72 h time point. IC50 was calculated using the Sigma Plot generated with GraphPad Prism 6 software. Cell growth was measured at every 24 h counting live cells with flow cytometry as previously described. Cells were collected every 24 h and cell viability was determined by the PE Annexin V Apoptosis Detection Kit I. Cell cycle analysis[1] DLBCL cells were treated with various concentrations of cerdulatinib for 48 h. Cells were incubated with 10 μM BrdU at 37°C for 2 h, and stained with PE conjugated anti-BrdU antibody (BD Biosciences) according to the supplier's manual. The percentage of cell cycle distribution was analyzed with FlowJo. Intracellular phosphospecific flow cytometry assays[1] DLBCL cells were treated with cerdulatinib for 6 h followed by stimulation with 5 μg/mL of goat F (ab')2 anti-human IgM and IgG antibodies at 37°C for 15 min. Cells were fixed in 4% formaldehyde at room temperature for 10 min, and permeabilized with 100% methanol on ice for 20 min before flow cytometric analyses. |
||
Animal Protocol |
|
||
References |
|
||
Additional Infomation |
Cerdulatinib is under investigation in clinical trial NCT04021082 (CELTIC-1: A Phase 2B Study of Cerdulatinib in Patients With Relapsed/refractory Peripheral T-cell Lymphoma (PTCL)).
Cerdulatinib is an orally bioavailable dual inhibitor of spleen tyrosine kinase (Syk) and Janus-associated kinases (JAK), with potential anti-inflammatory and antineoplastic activity. Upon oral administration, cerdulatinib specifically binds to and inhibits the activity of Syk, JAK1, and JAK3 with preferential inhibition of JAK1 and JAK3-dependent cytokine-mediated signaling and functional responses. This negatively affects the downstream JAK-STAT (signal transducer and activator of transcription) pathway, and leads to both reduced inflammation in various animal models and enhanced antiproliferative activity towards non-Hodgkin's lymphoma (NHL) cell lines. Syk is a non-receptor cytoplasmic tyrosine kinase involved in signal transduction in cells of hematopoietic origin including B cells, macrophages, basophils and neutrophils. Abnormal function of Syk has been implicated in several hematopoietic malignancies including NHL and chronic lymphocytic leukemia (CLL). The JAK-STAT pathway plays a key role in the signaling of many cytokines and growth factors and is involved in cellular proliferation, growth, hematopoiesis, and the immune response; JAK kinases may be upregulated in inflammatory diseases, myeloproliferative disorders, and various malignancies. |
Molecular Formula |
C20H27N7O3S
|
|
---|---|---|
Molecular Weight |
445.54
|
|
Exact Mass |
445.189
|
|
Elemental Analysis |
C, 53.92; H, 6.11; N, 22.01; O, 10.77; S, 7.20
|
|
CAS # |
1198300-79-6
|
|
Related CAS # |
Cerdulatinib hydrochloride;1369761-01-2
|
|
PubChem CID |
44595079
|
|
Appearance |
Typically exists as light gray to khaki solids at room temperature
|
|
Density |
1.4±0.1 g/cm3
|
|
Boiling Point |
741.9±70.0 °C at 760 mmHg
|
|
Flash Point |
402.5±35.7 °C
|
|
Vapour Pressure |
0.0±2.5 mmHg at 25°C
|
|
Index of Refraction |
1.683
|
|
LogP |
0.37
|
|
Hydrogen Bond Donor Count |
3
|
|
Hydrogen Bond Acceptor Count |
9
|
|
Rotatable Bond Count |
8
|
|
Heavy Atom Count |
31
|
|
Complexity |
711
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
S(C([H])([H])C([H])([H])[H])(N1C([H])([H])C([H])([H])N(C2C([H])=C([H])C(=C([H])C=2[H])N([H])C2=NC([H])=C(C(N([H])[H])=O)C(=N2)N([H])C2([H])C([H])([H])C2([H])[H])C([H])([H])C1([H])[H])(=O)=O
|
|
InChi Key |
BGLPECHZZQDNCD-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C20H27N7O3S/c1-2-31(29,30)27-11-9-26(10-12-27)16-7-5-15(6-8-16)24-20-22-13-17(18(21)28)19(25-20)23-14-3-4-14/h5-8,13-14H,2-4,9-12H2,1H3,(H2,21,28)(H2,22,23,24,25)
|
|
Chemical Name |
4-(cyclopropylamino)-2-[4-(4-ethylsulfonylpiperazin-1-yl)anilino]pyrimidine-5-carboxamide
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (5.61 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2445 mL | 11.2223 mL | 22.4447 mL | |
5 mM | 0.4489 mL | 2.2445 mL | 4.4889 mL | |
10 mM | 0.2244 mL | 1.1222 mL | 2.2445 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01994382 | Completed Has Results |
Drug: Cerdulatinib Biological: Rituximab |
Follicular Lymphoma (FL/Indolent NHL) Aggressive NHL (a NHL) |
Alexion Pharmaceuticals, Inc. | August 30, 2013 | Phase 1 Phase 2 |
NCT04021082 | Withdrawn | Drug: Cerdulatinib | Peripheral T-Cell Lymphoma (PTCL NOS) Nodal Lymphomas of T Follicular Helper (TFH) |
Portola Pharmaceuticals | November 15, 2019 | Phase 2 Phase 3 |
PRT062070 exhibits differential potency against cytokine JAK/STAT signaling pathways.J Pharmacol Exp Ther.2014 Dec;351(3):538-48. td> |
Dose responsive effect of PRT062070 in rat CIA treatment model.J Pharmacol Exp Ther.2014 Dec;351(3):538-48. td> |
PRT062070 blocks BCR-induced B-cell activation and splenomegaly in mice.J Pharmacol Exp Ther.2014 Dec;351(3):538-48. td> |