Calcipotriol Monohydrate

Alias: MC-903; PRI 2201; Psorcutan; Sorilux; MC903; Calcitrene; CCRIS 7700; Daivonex; Dovonex; MC 903; Calcipotriene; Calcipotriol Monohydrate
Cat No.:V17430 Purity: ≥98%
Calcipotriolhydrate (Daivonex; Dovonex; MC-903; PRI-2201; Psorcutan; Sorilux), the hydrated form of calcipotriol, is a synthetic calcitriol/Vitamin D3 (VD3)analog and a potent agonist of the VD3 receptor (VDR) used in the treatment of psoriasis and marketed under the trade name Dovonex.
Calcipotriol Monohydrate Chemical Structure CAS No.: 147657-22-5
Product category: VD VDR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Calcipotriol Monohydrate:

  • Calcipotriol (MC903)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Calcipotriol hydrate (Daivonex; Dovonex; MC-903; PRI-2201; Psorcutan; Sorilux), is a synthetic analog of calcitriol/Vitamin D3 (VD3) and a strong agonist of the VD3 receptor (VDR). It is marketed under the trade name Dovonex and is used in the treatment of psoriasis. It is less than 1% as active as calcitriol in controlling calcium metabolism, but it has a similar affinity for the Vitamin D receptor (VDR) as calcitriol (Vit. D). Calcipotriol is primarily used in medicine to treat chronic plaque psoriasis. Alopecia areata has also been successfully treated with it.

Biological Activity I Assay Protocols (From Reference)
Targets
vitamin D receptor
ln Vitro
When NHEK cell cultures were stimulated with IL-17A or IL-22, capecitatriol either had no effect (2–20 nM) or modestly increased (0.2 nM) the expression of IL-8 mRNA. Our earlier research was validated by the addition of IL-17A and IL-22, which greatly raised the mRNA expression of IL-8. Doses of 2, 20, and 40 nM of calcipotriol monohydrate dye-wise blocked this increased expression of IL-8 mRNA [1]. Medication administration to natural killer (NK) cells can alter the NK cytotoxic uptake or KIR expression. In under four hours, human NK cells were treated with 100, 10, or 1 ng/mL of 1,25 (OH) 2D3, calcipotriol monohydrate, or FTY720. Four hours following amino acids, the expression of NKp30 on the surface of NK cells was considerably up-regulated by three doses of 1, 25 (OH) 2D3, calcipotriol monohydrate, and FTY720 [2].
ln Vivo
All animals except for the diclofenac plus DFMO plus calcipotriol monohydrate group collapsed, and one of the thirty-two clofenac animals in each group perished. The groups were equally divided in terms of survival. When compared to gradient (linear regression model), body weight gain was significantly lower in the diclofenac plus calcipotriol monohydrate and diclofenac plus DFMO plus calcipotriol monohydrate treatment groups [3].
References
[1]. Al-Jaderi Z, et al. Effects of vitamin D3, calcipotriol and FTY720 on the expression of surface molecules and cytolytic activities of human natural killer cells and dendritic cells. Toxins (Basel). 2013 Oct 28;5(11):1932-47.
[2]. Sakabe JI, et al. Calcipotriol Increases hCAP18 mRNA Expression but Inhibits Extracellular LL37 Peptide Production in IL-17/IL-22-stimulated Normal Human Epidermal Keratinocytes. Acta Derm Venereol. 2014 Sep;94(5):512-6.
[3]. Pommergaard HC, et al. Combination chemoprevention with diclofenac, calcipotriol and difluoromethylornithine inhibits development of non-melanoma skin cancer in mice. Anticancer Res. 2013 Aug;33(8):3033-9
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H42O4
Molecular Weight
430.6200
Exact Mass
430.31
Elemental Analysis
C, 75.31; H, 9.83; O, 14.86
CAS #
147657-22-5
Related CAS #
Calcipotriol;112965-21-6
Appearance
Solid powder
SMILES
C[C@H](/C=C/[C@H](C1CC1)O)[C@H]2CC[C@@H]\3[C@@]2(CCC/C3=C\C=C/4\C[C@H](C[C@@H](C4=C)O)O)C.O
InChi Key
XBKHACNRWFKJNC-MANNPBRJSA-N
InChi Code
InChI=1S/C27H40O3.H2O/c1-17(6-13-25(29)20-8-9-20)23-11-12-24-19(5-4-14-27(23,24)3)7-10-21-15-22(28)16-26(30)18(21)2;/h6-7,10,13,17,20,22-26,28-30H,2,4-5,8-9,11-12,14-16H2,1,3H3;1H2/b13-6+,19-7+,21-10-;/t17-,22-,23-,24+,25-,26+,27-;/m1./s1
Chemical Name
(1R,3S,5Z)-5-[(2E)-2-[(1R,3aS,7aR)-1-[(E,2R,5S)-5-cyclopropyl-5-hydroxypent-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol;hydrate
Synonyms
MC-903; PRI 2201; Psorcutan; Sorilux; MC903; Calcitrene; CCRIS 7700; Daivonex; Dovonex; MC 903; Calcipotriene; Calcipotriol Monohydrate
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~232.2 mM)
Ethanol: ~100 mg/mL (~232.2 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 5 mg/mL (11.61 mM) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (11.61 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 5 mg/mL (11.61 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix well.


Solubility in Formulation 4: ≥ 2.5 mg/mL (5.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.5 mg/mL (5.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: ≥ 2.5 mg/mL (5.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 7: 2.5 mg/mL (5.81 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 8: ≥ 2.5 mg/mL (5.81 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3222 mL 11.6112 mL 23.2223 mL
5 mM 0.4644 mL 2.3222 mL 4.6445 mL
10 mM 0.2322 mL 1.1611 mL 2.3222 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Various concentrations of 1,25(OH)2D3, calcipotriol and FTY720 augment NK cells lysis of K562 target cells. E:T cell ratio shown is 2:1. Toxins (Basel) . 2013 Oct 28;5(11):1932-47.
  • Treatment of mature DCs with the drugs modulates their surface expression. Mature DCs were incubated for either 4 h or 24 h with 100, 10 or 1 ng/mL of 1,25(OH)2D3, calcipotriol or FTY720, washed and then examined. Toxins (Basel) . 2013 Oct 28;5(11):1932-47.
Contact Us Back to top