yingweiwo

Butenafine Hydrochloride

Cat No.:V34133 Purity: ≥98%
Butenafine HCl (KP363 HCl) has antifungal activity and blocks sterol synthesis by inhibiting squalene epoxidase.
Butenafine Hydrochloride
Butenafine Hydrochloride Chemical Structure CAS No.: 101827-46-7
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
5g
Other Sizes

Other Forms of Butenafine Hydrochloride:

  • Butenafine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Butenafine HCl (KP363 HCl) has antifungal activity and blocks sterol synthesis by inhibiting squalene epoxidase.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Butenafine hydrochloride, a benzylamine derivative, is an antifungal medication that treats fungal skin infections like athlete's foot and ringworm. Butenafine Hydrochronide is a squalene epoxidase inhibitor that prevents the production of ergosterol, which is necessary for fungal cell membranes. The medication exhibits great epidermal permeability, a lengthy retention duration after topical administration, and residual therapeutic action after treatment discontinuation. Butenafine also has anti-inflammatory properties. 1% butenafine hydrochloride cream is both safe and efficient for treating tinea cruris and tinea pedis.
References

[1]. Singal A. Butenafine and superficial mycoses: current status. Expert Opin Drug Metab Toxicol. 2008 Jul;4(7):999-1005.

[2]. Kokjohn K, Bradley M, Griffiths B, Ghannoum M. Evaluation of in vitro activity of ciclopirox olamine, butenafine HCl and econazole nitrate against dermatophytes, yeasts and bacteria. Int J Dermatol. 2003 Sep;42 Suppl 1:11-7.

[3]. Syed TA, Maibach HI. Butenafine hydrochloride: for the treatment of interdigital tinea pedis. Expert Opin Pharmacother. 2000 Mar;1(3):467-73.

[4]. McNeely W, Spencer CM. Butenafine. Drugs. 1998 Mar;55(3):405-12; discussion 413.

[5]. Butenafine.

Additional Infomation
Butenafine hydrochloride is the hydrochloride salt of butenafine. An inhibitor of squalene epoxidase, an enzyme responsible for the creation of sterols needed in fungal cell membranes, it is used for treatment of dermatological fungal infections. It has a role as an EC 1.14.13.132 (squalene monooxygenase) inhibitor and an antifungal drug. It is a hydrochloride and an ammonium salt. It contains a butenafine.
Butenafine Hydrochloride is the hydrochloride salt form of butenafine, a synthetic benzylamine derivative with fungicidal properties. Butenafine hydrochloride interferes with the biosynthesis of ergosterol, an important component of fungal cell membranes, by inhibiting the epoxidation of squalene. This alters fungal membrane permeability and causes growth inhibition. Butenafine hydrochloride is active against a number of dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Sporothrix schenckii, and yeasts, including Candida albicans and C. parapsilosis.
See also: Butenafine (has active moiety).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H28CLN
Molecular Weight
353.9281
Exact Mass
353.191
CAS #
101827-46-7
Related CAS #
Butenafine;101828-21-1;Butenafine-13C,d3 hydrochloride
PubChem CID
443867
Appearance
White to off-white solid powder
Density
1.0±0.1 g/cm3
Boiling Point
426.1±14.0 °C at 760 mmHg
Melting Point
210-214°C
Flash Point
187.7±17.0 °C
Vapour Pressure
0.0±1.0 mmHg at 25°C
Index of Refraction
1.598
LogP
6.77
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
5
Heavy Atom Count
25
Complexity
374
Defined Atom Stereocenter Count
0
InChi Key
LJBSAUIFGPSHCN-UHFFFAOYSA-N
InChi Code
InChI=1S/C23H27N.ClH/c1-23(2,3)21-14-12-18(13-15-21)16-24(4)17-20-10-7-9-19-8-5-6-11-22(19)20;/h5-15H,16-17H2,1-4H3;1H
Chemical Name
1-(4-tert-butylphenyl)-N-methyl-N-(naphthalen-1-ylmethyl)methanamine;hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~25 mg/mL (~70.64 mM)
H2O : ~1 mg/mL (~2.83 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.06 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.06 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.06 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8254 mL 14.1271 mL 28.2542 mL
5 mM 0.5651 mL 2.8254 mL 5.6508 mL
10 mM 0.2825 mL 1.4127 mL 2.8254 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us