Size | Price | Stock | Qty |
---|---|---|---|
1g |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The absorption, metabolism and excretion of (14)C-labelled Green S and Brilliant Blue FCF have been studied in the rat, mouse and guinea-pig. Following administration of a single oral dose of Green S at either 100 ug/kg or 10 mg/kg of Brilliant Blue FCF at either 30 ug/kg or 3 mg/kg to male or female rats, substantially all of the dose was excreted unchanged in the feces within 72 hr. Pretreating male rats with unlabelled Green S or Brilliant Blue FCF in the diet (100 or 30 mg/kg day, respectively) for 21 days prior to dosing with (14)C-labelled coloring had no effect on the route of excretion or the time taken to eliminate all of the label. Similarly male mice and guinea-pigs excreted in the feces all of a single oral dose of Green S or Brilliant Blue FCF. The lack of absorption and metabolism of the labelled dye in the gastro-intestinal tract of all three species investigated was confirmed by studies using isolated loops of small intestine. It was shown that no radioactivity was taken up by the fetuses of pregnant rats given (14)C-labelled Green S or Brilliant Blue FCF. Female Sprague-Dawley rats were given a single dose (0.27 mg; 1.74 uCi) of the (14)C-labelled coloring by gavage. In bile-duct ligated rats, intestinal absorption of FD & C Blue No.1 (estimated from urinary (14)C excretion, expired (14)CO2 and residual radioactivity in internal organs and tissues 96 hr after oral administration) averaged 2.05% of the dose. Mean fecal excretion was 97.28% and the total recovery of administered radioactivity was 99.38%. Intestinal absorption (14)C-FD & C Blue No. 1 in intact rats averaged only 0.27% (91% recovery), while biliary excretion in bile-duct cannulated animals averaged 1.32% of the dose. Thin-layer chromatography of urine and bile samples revealed that about 95% of excreted radioactivity was unaltered FD & C Blue No. 1 and that about 5% was an unidentified metabolite or degradation product of FD & C Blue No. 1. The results show that FD & C Blue No.1 is poorly absorbed from the gastro-intestinal tract, and undergoes subsequent rapid and complete biliary excretion /of the absorbed compound/. ... Less than 0.05% of a labeled dose of 3 mg/kg bw was excreted in the bile of rats over a 5-hour period. Very little radioactivity (0.004 - 0.006% of dose) was detected on day 11 in the fetuses of pregnant rats given (14)C-labelled Brilliant Blue FCF orally on day 8 of gestation. ... Brilliant Blue FCF was labeled with (14)C in the central methane ring and had a radioactive purity of greater than 95%. ... Following administration of either 30 ug/kg bw or 3 mg/kg bw of (14)C-Brilliant Blue FCF by gavage to male or female rats, substantially all of the dose was excreted unchanged in the feces within 72 hours (99.9% at low dose, 95.4% at high dose). No radioactivity was detected in the expired air and less than 0.5% was detected in the urine. ... For more Absorption, Distribution and Excretion (Complete) data for Brilliant Blue (6 total), please visit the HSDB record page. |
---|---|
Toxicity/Toxicokinetics |
Interactions
Although individual tar food colors are controlled based on acceptable daily intake (ADI), there is no apparent information available for how combinations of these additives affect food safety. In the current study, the potencies of single and combination use of /dyes/ were examined on neural progenitor cell (NPC) toxicity, a biomarker for developmental stage, and neurogenesis, indicative of adult central nervous system (CNS) functions. /Allura red AC/ and /amaranth/ reduced NPC proliferation and viability in mouse multipotent NPC, in the developing CNS model. Among several combinations tested in mouse model, combination of /tartrazine /and /brilliant blue FCF / at 1000-fold higher than average daily intake in Korea significantly decreased numbers of newly generated cells in adult mouse hippocampus, indicating potent adverse actions on hippocampal neurogenesis. However, other combinations including /allura red AC/ and /amaranth/ did not affect adult hippocampal neurogenesis in the dentate gyrus. Evidence indicates that single and combination use of most tar food colors may be safe with respect to risk using developmental NPC and adult hippocampal neurogenesis. However, the response to excessively high dose combination of /tartrazine/ and /brilliant blue FCF/ suggestive of synergistic effects to suppress proliferation of NPC in adult hippocampus. Data indicated that combinations of tar colors may adversely affect both developmental and adult hippocampal neurogenesis... Non-Human Toxicity Values LD50 Rats oral >2.0 g/kg bw LD50 Mouse subcutaneous 4.6 g/kg bw |
References | |
Additional Infomation |
Brilliant Blue is an organic molecular entity.
Erioglaucine A disodium salt is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]"). |
Molecular Formula |
C37H34N2NA2O9S3
|
---|---|
Molecular Weight |
792.8484
|
Exact Mass |
792.122
|
CAS # |
3844-45-9
|
Related CAS # |
25305-78-6 (Parent)
|
PubChem CID |
19700
|
Appearance |
Pale purple to purple solid powder
|
Melting Point |
283 °C (dec.)(lit.)
|
LogP |
8.269
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
10
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
53
|
Complexity |
1510
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
SGHZXLIDFTYFHQ-UHFFFAOYSA-L
|
InChi Code |
InChI=1S/C37H36N2O9S3.2Na/c1-3-38(25-27-9-7-11-33(23-27)49(40,41)42)31-19-15-29(16-20-31)37(35-13-5-6-14-36(35)51(46,47)48)30-17-21-32(22-18-30)39(4-2)26-28-10-8-12-34(24-28)50(43,44)45;;/h5-24H,3-4,25-26H2,1-2H3,(H2-,40,41,42,43,44,45,46,47,48);;/q;2*+1/p-2
|
Chemical Name |
disodium;2-[[4-[ethyl-[(3-sulfonatophenyl)methyl]amino]phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]cyclohexa-2,5-dien-1-ylidene]methyl]benzenesulfonate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~33.33 mg/mL (~42.04 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 25 mg/mL (31.53 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
 (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.2613 mL | 6.3064 mL | 12.6127 mL | |
5 mM | 0.2523 mL | 1.2613 mL | 2.5225 mL | |
10 mM | 0.1261 mL | 0.6306 mL | 1.2613 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.