yingweiwo

BRD5529

Alias: BRD-5529; BRD 5529; BRD5529
Cat No.:V16997 Purity: ≥98%
BRD5529 is a potent dose-dependent CARD9-TRIM62 protein-protein interaction (PPI) inhibitor (antagonist) with IC50 of 8.6 μM.
BRD5529
BRD5529 Chemical Structure CAS No.: 1358488-78-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
BRD5529 is a potent dose-dependent CARD9-TRIM62 protein-protein interaction (PPI) inhibitor (antagonist) with IC50 of 8.6 μM. BRD5529 potently and completely inhibits CARD9 ubiquitination in vitro and also has good solubility. BRD5529 may be utilized in study/research of inflammatory bowel diseases (IBD) like Crohn's disease (CD) and ulcerative colitis (UC).
Biological Activity I Assay Protocols (From Reference)
ln Vitro
BRD5529 exhibits strong CARD9-TRIM62 inhibitory activity that is dose-dependent, with an IC50 of 8.6 μM[1]. In vitro, BRD5529 binds CARD9 directly and disrupts its ubiquitination, while TRIM62 is not bound by it [1]. In vitro, TRIM62-mediated CARD9 ubiquitination is dose-dependently inhibited by BRD5529 (40 μM) [1]. Innate immune cells' CARD9-dependent signaling is inhibited by BRD5529 (200 μM, 0–50 minutes; 200 μM, 2-4 hours) [1].
ln Vivo
The initial general safety and toxicological investigation of BRD5529 (ip; 0.1 or 1.0 mg/kg; daily for 2 weeks) revealed no inherent safety issues [2].
Cell Assay
Western Blot analysis [1]
Cell Types: HEK293F Cell
Tested Concentrations: 40 μM
Incubation Duration:
Experimental Results: Inhibition of CARD9 ubiquitination reaction in vitro.
Animal Protocol
Animal/Disease Models: Pneumocystis pneumonia (PCP) model [2]
Doses: 0.1 or 1.0 mg/kg
Route of Administration: intraperitonealdaily for 2 weeks
Experimental Results: No significant changes in daily or final body weight gain, Proinflammatory cytokines demonstrated no significant differences in changes. Pathological scores demonstrated no obvious changes in the lungs, liver, and kidneys.
References

[1]. Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatorybowel disease. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11392-11397.

[2]. Preclinical and Toxicology Studies of BRD5529, a Selective Inhibitor of CARD9. Drugs R D. 2022 Jun;22(2):165-173.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H31N5O4
Molecular Weight
465.54474568367
Exact Mass
465.237
CAS #
1358488-78-4
PubChem CID
83288403
Appearance
Light yellow to yellow solid powder
LogP
-0.1
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
6
Heavy Atom Count
34
Complexity
740
Defined Atom Stereocenter Count
0
SMILES
O=C(C1(CCN(C2C(C(=O)O)=CC(=CN=2)NC(C2C=CC(C)=CC=2)=O)CC1)N1CCCCC1)N
InChi Key
ZXWHESBABUHJBE-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H31N5O4/c1-17-5-7-18(8-6-17)22(31)28-19-15-20(23(32)33)21(27-16-19)29-13-9-25(10-14-29,24(26)34)30-11-3-2-4-12-30/h5-8,15-16H,2-4,9-14H2,1H3,(H2,26,34)(H,28,31)(H,32,33)
Chemical Name
2-(4-carbamoyl-4-piperidin-1-ylpiperidin-1-yl)-5-[(4-methylbenzoyl)amino]pyridine-3-carboxylic acid
Synonyms
BRD-5529; BRD 5529; BRD5529
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~268.51 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.47 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.47 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.47 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 20 mg/mL (42.96 mM) in 0.5% CMC-Na/saline water (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1480 mL 10.7402 mL 21.4804 mL
5 mM 0.4296 mL 2.1480 mL 4.2961 mL
10 mM 0.2148 mL 1.0740 mL 2.1480 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us