yingweiwo

BI-167107

Alias: BI-167107 BI167107 BI 167107
Cat No.:V6780 Purity: ≥98%
BI-167107 is a high-affinity full agonist of β2-adrenergic receptor (β2AR) that binds to β2-adrenergic receptor (β2AR) with a dissociation constant Kd of 84 pM.
BI-167107
BI-167107 Chemical Structure CAS No.: 1202235-68-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
BI-167107 is a high-affinity full agonist of β2-adrenergic receptor (β2AR) that binds to β2-adrenergic receptor (β2AR) with a dissociation constant Kd of 84 pM.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In comparison to other βAR ligands, BI-167107 exhibits a sluggish off-rate and nanomolar affinity [1].
References

[1]. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature. 2011 Jan 13;469(7329):175-80.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H26N2O4
Molecular Weight
370.4421
Exact Mass
370.189
CAS #
1202235-68-4
PubChem CID
45483813
Appearance
White to off-white solid powder
LogP
2.2
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
6
Heavy Atom Count
27
Complexity
512
Defined Atom Stereocenter Count
0
InChi Key
NWQXBEWHTDRJIP-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H26N2O4/c1-13-6-4-5-7-14(13)10-21(2,3)22-11-17(25)15-8-9-16(24)19-20(15)27-12-18(26)23-19/h4-9,17,22,24-25H,10-12H2,1-3H3,(H,23,26)
Chemical Name
5-hydroxy-8-[1-hydroxy-2-[[2-methyl-1-(2-methylphenyl)propan-2-yl]amino]ethyl]-4H-1,4-benzoxazin-3-one
Synonyms
BI-167107 BI167107 BI 167107
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~75 mg/mL (~202.46 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3.75 mg/mL (10.12 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 37.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3.75 mg/mL (10.12 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 37.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 3.75 mg/mL (10.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 37.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6995 mL 13.4975 mL 26.9949 mL
5 mM 0.5399 mL 2.6995 mL 5.3990 mL
10 mM 0.2699 mL 1.3497 mL 2.6995 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Comparison of the agonist-Nb80 stabilized crystal structures of the β2AR with inverse agonist bound β2AR and opsin The structure of inverse agonist carazolol bound β2AR-T4L (β2AR-Cz) is shown in blue with the carazolol in yellow. The structure of BI-167107 agonist bound and Nb80 stabilized β2AR-T4L (β2AR-Nb80) is shown in orange with BI-167107 in green. These two structures were aligned using Pymol align function. a, Side view of the β2AR-Nb80 complex with β2AR in orange and CDRs of Nb80 in light blue (CDR1) and blue (CDR3). b, Side view of the superimposed structures showing significant structural changes in the intracellular and G protein facing part of the receptors. c, Comparison of the extracellular ligand binding domains showing modest structural changes. d, Cytoplasmic view showing the ionic lock interaction between Asp3.49 and Arg3.50 of the DRY motif in TM3 is broken in the β2AR-Nb80 structure. The intracellular end of TM6 is moved outward and away from the core of the receptor. The arrow indicates a 11.4 Å change in distance between the α-carbon of Glu6.30 in the structures of β2AR-Cz and β2AR-Nb80. The intracellular ends of TM3 and TM7 move towards the core by 4 and 2.5 Å respectively, while TM5 moves outward by 6Å. e, The β2AR-Nb80 structure superimposed with the structure of opsin crystallized with the C-terminal peptide of Gt (transducin) 2. PyMOL (http://www.pymol.org) was used for the preparation of all structure figures.[1].Rasmussen SG, et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature. 2011 Jan 13;469(7329):175-80.
  • Ligand binding pocket of BI-167107 and carazolol bound β2AR structures Panels a and b depict extracellular views of the agonist BI-167107 and carazolol bound structures, respectively. Residues within 4Å of one or both ligands are shown as sticks. In all panels, oxygens are red and nitrogens are blue. Panels c and d show a schematic representation of the interactions between the β2AR and the ligands BI-167107 and carazolol. The residues shown here have at least one atom within 4 Å of the ligand in the crystal structures. Mutations of amino acids in orange boxes have been shown to disrupt both antagonist and agonist binding. Mutations of amino acids in blue boxes have been shown to disrupt agonist binding. Green lines indicate potential hydrophobic interactions and orange lines indicate potential polar interactions.[1].Rasmussen SG, et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature. 2011 Jan 13;469(7329):175-80.
  • Rearrangement of transmembrane segment packing interactions upon agonist binding a, The BI-167107 and carazolol bound structures are superimposed to show structural differences propagating from the ligand binding pocket. BI-167107 and carazolol are shown with green and yellow bonds, respectively. b, Packing interactions that stabilize the inactive state are observed between Pro211 in TM5, Ile121 in TM3, Phe282 in TM6 and Asn318 in TM7. c, The inward movement of TM5 upon agonist binding disrupts the packing of Ile121 and Pro211 resulting in a rearrangement of interactions between Ile121 and Phe282. These changes contribute to a rotation and outward movement of TM6 and an inward movement of TM7.[1].Rasmussen SG, et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature. 2011 Jan 13;469(7329):175-80.
Contact Us