ARRY-380 analog

Alias: Irbinitinib analog; Tucatinib analog; ARRY-380 analog; ONT380 analog; ONT 380 analog; ONT-380 analog
Cat No.:V2759 Purity: ≥98%
ARRY-380 analog, an analog of ARRY-380 (Irbinitinib, formerly known as ARRY-380 andONT-380 or Tucatinib) which is a potent and selective small molecule inhibitor of HER2 with IC50 value of 8 nM, it is equally potent against truncated p95-HER2, and is 500-fold more selective for HER2 versus EGFR.
ARRY-380 analog Chemical Structure CAS No.: 937265-83-3
Product category: EGFR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of ARRY-380 analog:

  • Irbinitinib
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
InvivoChem's ARRY-380 analog has been cited by 1 publication
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

ARRY-380 analog, an analog of ARRY-380 (Irbinitinib, formerly known as ARRY-380 and ONT-380 or Tucatinib) which is a potent and selective small molecule inhibitor of HER2 with IC50 value of 8 nM, it is equally potent against truncated p95-HER2, and is 500-fold more selective for HER2 versus EGFR. Irbinitinib acts by blocking the proliferation and phosphorylation of HER2 and its downstream effector, Akt. By contrast, in the EGFR overexpressing cell lines, it weakly inhibits phosphorylation and proliferation, demonstrating that Irbinitinib may have potential to block HER2 signaling without causing the toxicities of EGFR inhibition. Therefore, it has the potential to be used as an anticancer agent.

Biological Activity I Assay Protocols (From Reference)
ln Vitro

In vitro activity: ARRY-380 analog, an analog of ARRY-380 (Irbinitinib, formerly known as ARRY-380 and ONT-380 or Tucatinib) which is a potent and selective small molecule inhibitor of HER2 with IC50 value of 8 nM, it is equally potent against truncated p95-HER2, and is 500-fold more selective for HER2 versus EGFR. Irbinitinib acts by blocking the proliferation and phosphorylation of HER2 and its downstream effector, Akt. By contrast, in the EGFR overexpressing cell lines, it weakly inhibits phosphorylation and proliferation, demonstrating that Irbinitinib may have potential to block HER2 signaling without causing the toxicities of EGFR inhibition. Therefore, it has the potential to be used as an anticancer agent.


Kinase Assay: Irbinitinib, formerly known as ARRY-380 and ONT-380 or Tucatinib, is a potent and selective small molecule inhibitor of HER2 with IC50 value of 8 nM, it is equally potent against truncated p95-HER2, and is 500-fold more selective for HER2 versus EGFR. Irbinitinib acts by blocking the proliferation and phosphorylation of HER2 and its downstream effector, Akt. By contrast, in the EGFR overexpressing cell lines, it weakly inhibits phosphorylation and proliferation, demonstrating that Irbinitinib may have potential to block HER2 signaling without causing the toxicities of EGFR inhibition. Therefore, it has the potential to be used as an anticancer agent.


Cell Assay: ONT-380 has nanomolar activity against purified HER2 enzyme and is approximately 500-fold selective for HER2 versus EGFR in cell-based assays. In the EGFR overexpressing cell lines, it weakly inhibits phosphorylation and proliferation, demonstrating that Irbinitinib may have potential to block HER2 signaling without causing the toxicities of EGFR inhibition.

ln Vivo
In the ARRY-380-treated-group, 75% of the animals are alive on Day 43. ARRY-380 and its active metabolite causes a significant reduction in brain pErbB2 (80%). ARRY-380 demonstrates significant dose-related tumor growth inhibition (TGI; 50% at 50 mg/kg/d and 96% at 100 mg/kg/d) with numerous partial regressions (>50% reduction from baseline size) at the higher dose level in 9/12 animals. ARRY-380 (50 mg/kg/d) in combination with trastuzumab shows a 98% TGI with complete regressions in 9/12 animals and two partial regressions. At dose of 100 mg/kg/d of ARRY-380 in combination with trastuzumab, there is 100% TGI and all animals have complete responses.
Animal Protocol
200 mg/kg/d; oral
Mice with SKOV-3 tumor
References
2017 Jul 15;23(14):3529-3536.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H27N7O4S
Molecular Weight
569.63
CAS #
937265-83-3
Related CAS #
937263-43-9;937265-83-3 (ARRY-380 analog);
SMILES
O=S(CCNCC1=CC=C(C2=CC3=C(NC4=CC=C(OC5=CC6=NC=NN6C=C5)C(C)=C4)N=CN=C3C=C2)O1)(C)=O
Synonyms
Irbinitinib analog; Tucatinib analog; ARRY-380 analog; ONT380 analog; ONT 380 analog; ONT-380 analog
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:100 mg/mL (175.55 mM)
Water:<1 mg/mL
Ethanol:3 mg/mL (5.26 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.65 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.08 mg/mL (3.65 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7555 mL 8.7776 mL 17.5553 mL
5 mM 0.3511 mL 1.7555 mL 3.5111 mL
10 mM 0.1756 mL 0.8778 mL 1.7555 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • ARRY-380 analog


    Geometric mean (SD) plasma ONT-380 concentrations on cycle 1 day 15 (Semi-log Scale).2017 Jul 15;23(14):3529-3536.

  • ARRY-380 analog


    Waterfall plot of target lesions in HER2+MBC patients with measurable disease evaluable for response at ONT-380 doses ≥600 mg BID (N= 20).2017 Jul 15;23(14):3529-3536.

Contact Us Back to top