yingweiwo

Aprocitentan D4

Cat No.:V40271 Purity: ≥98%
Aprocitentan D4 (ACT132577 D4; ACT-132577 D4) is the tetra-deuterate form of Aprocitentan, which is a major active metabolite of Macitentan (a dual ETA/ETB antagonist).
Aprocitentan D4
Aprocitentan D4 Chemical Structure CAS No.: 1103522-45-7
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Aprocitentan D4 (ACT132577 D4; ACT-132577 D4) is the tetra-deuterate form of Aprocitentan, which is a major active metabolite of Macitentan (a dual ETA/ETB antagonist).

Biological Activity I Assay Protocols (From Reference)
ln Vitro
The ET-1-induced rise in intracellular calcium in non-recombinant cells (primary human lung smooth muscle cells, rat aortic smooth muscle cell line A10, and mouse fibroblast cell line 3T3) is entirely inhibited by aproticitentan (ACT-132577) [1].
ln Vivo
Aprocitentan (ACT-132577) has a longer half-life than its parent chemical and a volume of distribution larger than rats' plasma volumes [1]. The average recovery of Aprocitentan (ACT-132577) in rat plasma ranged from 82.6% to 90.6%, whereas its matrix effect in rat plasma varied from 101.4% to 115.2% [2].
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of aprocitentan during breastfeeding. Because aprocitentan is more than 99% bound to plasma proteins, the amount in milk is likely to be low. However, its half-life is 41 hours and it might accumulate in the infant. Because no information is available on the use of aprocitentan during breastfeeding, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
References

[1]. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J Pharmacol Exp Ther. 2008 Dec;327(3):736-45.

[2]. Pharmacokinetic study of ACT-132577 in rat plasma by ultra performance liquid chromatography-tandem mass spectrometry. Int J Clin Exp Med. 2015 Oct 15;8(10):18420-6.

Additional Infomation
ACT-132577 is a member of the class of sulfamides in which one of the amino groups of sulfonamide is substituted by a 5-(4-bromophenyl)-6-{2-[(5-bromopyrimidin-2-yl)oxy]ethoxy}pyrimidin-4-yl group. An active metabolite of macitentan (obtained by oxidative depropylation), an orphan drug used for the treatment of pulmonary arterial hypertension. It has a role as an antihypertensive agent, an endothelin receptor antagonist, a drug metabolite and a xenobiotic metabolite. It is an aromatic ether, an organobromine compound, a member of pyrimidines and a member of sulfamides. It is functionally related to an ethylene glycol.
Aprocitentan is under investigation in clinical trial NCT03541174 (A Research Study to Show the Effect of Aprocitentan in the Treatment of Difficult to Control (Resistant) High Blood Pressure (Hypertension) and Find Out More About Its Safety).
Drug Indication
Treatment of hypertension
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₁₆H₁₀D₄BR₂N₆O₄S
Molecular Weight
550.22
Exact Mass
543.916
CAS #
1103522-45-7
Related CAS #
Aprocitentan-d4
PubChem CID
25099191
Appearance
White to off-white solid powder
LogP
4.385
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
8
Heavy Atom Count
29
Complexity
597
Defined Atom Stereocenter Count
0
SMILES
0
InChi Key
DKULOVKANLVDEA-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H14Br2N6O4S/c17-11-3-1-10(2-4-11)13-14(24-29(19,25)26)22-9-23-15(13)27-5-6-28-16-20-7-12(18)8-21-16/h1-4,7-9H,5-6H2,(H2,19,25,26)(H,22,23,24)
Chemical Name
5-(4-bromophenyl)-4-[2-(5-bromopyrimidin-2-yl)oxyethoxy]-6-(sulfamoylamino)pyrimidine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~25 mg/mL (~45.77 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.58 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.58 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8175 mL 9.0873 mL 18.1745 mL
5 mM 0.3635 mL 1.8175 mL 3.6349 mL
10 mM 0.1817 mL 0.9087 mL 1.8175 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us