Ampicillin sodium

Alias: Alpen-N;Amcill-S;Ampicillin natrium;Ampicillin sodium
Cat No.:V29597 Purity: ≥98%
Ampicillin sodium is a potent broad-spectrum beta-lactam antibiotic widely used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis.
Ampicillin sodium Chemical Structure CAS No.: 69-52-3
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
25g
50g
Other Sizes

Other Forms of Ampicillin sodium:

  • Ampicillin [D-(-)-α-Aminobenzylpenicillin)]
  • Ampicillin Trihydrate [D-(-)-α-Aminobenzylpenicillin]
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Ampicillin sodium is a potent broad-spectrum beta-lactam antibiotic widely used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis. It may also be used to prevent group B streptococcal infection in newborns. It is used by mouth, by injection into a muscle, or intravenously. Like all antibiotics, it is not useful for the treatment of viral infections.

Biological Activity I Assay Protocols (From Reference)
Targets
β-lactam
ln Vitro
Ampicillin has a dose-dependent effect on swine-derived E. Coli growth inhibition. Ampicillin's effective inhibitory concentration was 2.5 uG/mL[1].
ln Vivo
Ampicillin is very effective in alleviating the symptoms of hemorrhagic enteritis in a 11-week old pig[1]. Maximum concentrations of ampicillin are twice as high in bile as they are in serum. After an oral dosage, the peak concentration of ampicillin in portal blood is twice as high as in peripheral blood[2]. Neuroprotection against brain damage caused by ischemia-reperfusion is offered by ampicillin. Ampicillin raises the level of GLT-1 expression while decreasing MMP activity. After global forebrain ischemia, pretreatment with ampicillin dramatically lowers medial hippocampal cell death[3].
Animal Protocol
Mice: Normal saline is used to dissolve ampicillin. After receiving halothane anesthesia, male C57BL/6 mice had their common carotid arteries blocked bilaterally for 40 minutes. Penicillin G (6,000 U/kg or 20,000 U/kg, intraperitoneally [i.p.]) or ampicillin (200 mg/kg) was given intraperitoneally (i.p.) every day for five days prior to transient forebrain ischemia. The same volume and timing of saline administration were used for the control animals[3].
References

[1]. Effect of Ampicillin on E. Coli of Swine Origin. Can J Comp Med Vet Sci. 1963 Sep;27(9):223-7.

[2]. Ampicillin in portal and peripheral blood and bile after oral administration of ampicillin andpivampicillin. Eur J Clin Pharmacol. 1974;7(2):133-5.

[3]. The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia. Korean J Physiol Pharmacol. 2016 Mar;20(2):185-92.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H18N3NAO4S
Molecular Weight
371.3866
Exact Mass
371.09
Elemental Analysis
C, 51.75; H, 4.89; N, 11.31; Na, 6.19; O, 17.23; S, 8.63
CAS #
69-52-3
Related CAS #
Ampicillin;69-53-4;Ampicillin trihydrate;7177-48-2
Appearance
Solid powder
SMILES
N(C(=O)[C@@H](c1ccccc1)N)[C@H]1[C@@H]2N(C1=O)[C@H](C(S2)(C)C)C(=O)[O-].[Na+]
InChi Key
KLOHDWPABZXLGI-YWUHCJSESA-M
InChi Code
1S/C16H19N3O4S.Na/c1-16(2)11(15(22)23)19-13(21)10(14(19)24-16)18-12(20)9(17)8-6-4-3-5-7-8;/h3-7,9-11,14H,17H2,1-2H3,(H,18,20)(H,22,23);/q;+1/p-1/t9-,10-,11+,14-;/m1./s1
Chemical Name
4-Thia-1-azabicyclo(3.2.0)heptane-2-carboxylic acid, 6-((aminophenylacetyl)amino)-3,3-dimethyl-7-oxo-, monosodium salt, (2S-(2alpha,5alpha,6beta(S*)))-
Synonyms
Alpen-N;Amcill-S;Ampicillin natrium;Ampicillin sodium
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ≥ 200 mg/mL (~538.53 mM)
DMSO : ~200 mg/mL (~538.53 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (13.46 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (13.46 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 5 mg/mL (13.46 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 2.5 mg/mL (6.73 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.5 mg/mL (6.73 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: 50 mg/mL (134.63 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6926 mL 13.4629 mL 26.9259 mL
5 mM 0.5385 mL 2.6926 mL 5.3852 mL
10 mM 0.2693 mL 1.3463 mL 2.6926 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top