Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
Targets |
Natural product; COX-2, IL-6, Nck-2 etc.
|
---|---|
ln Vitro |
Through negative regulation of NFκB, alpha-Cyperone's anti-inflammatory effect in LPS-stimulated RAW 264.7 cells is linked to COX-2 and IL-6 arrears [1]. Tubulin is bound by alpha-Cyperone, which also reacts to it and has the ability to severely disrupt microtubule polymerization. This response could have the effect of reducing faults, which is highly advantageous for handling problems that are comparable to AD [2].
|
Enzyme Assay |
It was demonstrated that α-Cyperone had a pronounced influence on the tubulin structure, decreased polymerization rate and reduced concentration of polymerized tubulin in vitro. The CD deconvolution analysis concluded that significant conformational changes occurred, demonstrated by a drastic increase in content of β-strands upon binding of α-Cyperone. The fluorescence spectroscopy revealed that a static type of quenching mechanism is responsible for binding of α-Cyperone to tubulin. Upon characterization of various biophysical parameters, it was further deduced that ligand binding was spontaneous and a single site of binding was confirmed. Transmission electron microscopy revealed that upon binding of α-Cyperone to microtubule the number and complexity of fibers were noticeably decreased. The computational analysis of docking suggested that α-Cyperone binds preferably to β-tubulin at a distinct location with close proximity to the GTP binding and hydrolysis site. The ligand interaction with β-tubulin is mostly hydrophobic and occurs at amino acid residues that are exclusively on random coil. The BINANA 1.2.0 algorithm which counts and tallies close molecular interaction by performing defined set of simulations revealed that amino acid residues Arg 48 and Val 62 have registered the highest scores and are possibly crucial in ligand-protein interaction[2].
|
Cell Assay |
PGE2 and cytokines released from cells were measured using an EIA assay kit. The expression of iNOS, COX-2, TNF-α, and IL-6 was measured by real-time RT-PCR and/or Western blot analysis. A luciferase assay was performed to measure the effect of α-cyperone on NFκB activity[1].
|
References |
|
Additional Infomation |
alpha-Cyperone has been reported in Swertia japonica, Artemisia herba-alba, and other organisms with data available.
|
Molecular Formula |
C15H22O
|
---|---|
Molecular Weight |
218.3346
|
Exact Mass |
218.167
|
Elemental Analysis |
C, 82.52; H, 10.16; O, 7.33
|
CAS # |
473-08-5
|
PubChem CID |
6452086
|
Appearance |
liquid
|
Density |
1.0±0.1 g/cm3
|
Boiling Point |
320.4±22.0 °C at 760 mmHg
|
Flash Point |
142.8±13.2 °C
|
Vapour Pressure |
0.0±0.7 mmHg at 25°C
|
Index of Refraction |
1.504
|
Source |
Endogenous Metabolite; Swertia japonica, Artemisia herba-alba
|
LogP |
4.22
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
1
|
Rotatable Bond Count |
1
|
Heavy Atom Count |
16
|
Complexity |
375
|
Defined Atom Stereocenter Count |
2
|
SMILES |
O=C1C(C([H])([H])[H])=C2C([H])([H])[C@]([H])(C(=C([H])[H])C([H])([H])[H])C([H])([H])C([H])([H])[C@@]2(C([H])([H])[H])C([H])([H])C1([H])[H]
|
InChi Key |
KUFXJZXMWHNCEH-DOMZBBRYSA-N
|
InChi Code |
InChI=1S/C15H22O/c1-10(2)12-5-7-15(4)8-6-14(16)11(3)13(15)9-12/h12H,1,5-9H2,2-4H3/t12-,15+/m1/s1
|
Chemical Name |
(4aS,7R)-1,4a-dimethyl-7-prop-1-en-2-yl-3,4,5,6,7,8-hexahydronaphthalen-2-one
|
Synonyms |
alpha-Cyperone; 473-08-5; Eudesma-4,11-dien-3-one; (4aS,7R)-1,4a-dimethyl-7-prop-1-en-2-yl-3,4,5,6,7,8-hexahydronaphthalen-2-one; (+)-alpha-Cyperone; ZL24SG1C2D; (+)-a-Cyperone; (4aS-cis)-4,4a,5,6,7,8-Hexahydro-1,4a-dimethyl-7-(1-methylethenyl)-2(3H)-naphthalenone;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product is not stable in solution, please use freshly prepared working solution for optimal results. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
Ethanol : ~140 mg/mL (~641.23 mM)
DMSO : ~100 mg/mL (~458.02 mM) H2O : < 0.1 mg/mL |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 3.5 mg/mL (16.03 mM) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 35.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 3.5 mg/mL (16.03 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 35.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 3.5 mg/mL (16.03 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: ≥ 2.5 mg/mL (11.45 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 5: ≥ 2.5 mg/mL (11.45 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 6: ≥ 2.5 mg/mL (11.45 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.5802 mL | 22.9011 mL | 45.8022 mL | |
5 mM | 0.9160 mL | 4.5802 mL | 9.1604 mL | |
10 mM | 0.4580 mL | 2.2901 mL | 4.5802 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.