Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
ln Vitro |
Allopurinol nucleoside competitively inhibits the action of purine nucleoside phosphorylase on inosine, with a Ki of 277 μM. In a concentration-dependent way, allopurinol nucleoside markedly reduced the lymphocyte blastogenesis generated by PHA and Con A. When LPS was employed as a mitogen, the inhibitory impact of allopurinol-nucleoside lymphocyte proliferation was less noticeable. Allopurinol nucleoside does not suppress humoral immunity [1]. An investigational medication called allopurinol nucleoside is being used to treat Chagas disease and leishmaniasis. Allopurinol nucleoside is effective against parasites because a set of enzymes (similar to those in the body that mediate purine recycling) transform it into 4-aminopyrazolopyrimidine ribonucleoside triphosphate, a cytotoxic compound. Allopurinol nucleoside is selectively hazardous because it is not digested by the appropriate enzymes in the human body [2].
|
---|---|
ln Vivo |
The elimination half-life of allopurinol nucleoside is three hours, and its steady-state concentrations remain within the therapeutic range [3]. The nucleoside peaks in plasma 1.6 hours after administration. Allopurinol nucleoside plasma levels are surprisingly low after oral administration because of incomplete absorption and quick renal clearance. Probenecid triples the levels of allopurinol nucleoside in plasma, prolongs its half-life in plasma, and reduces the renal clearance of allopurinol nucleoside [4].
|
References |
|
Additional Infomation |
Allopurinol riboside is a nucleoside analogue that is allopurinol with a beta-D-ribofuranosyl moiety at the 1-position. It has a role as a metabolite. It is functionally related to an allopurinol.
Allopurinol riboside is a nucleoside analogue of [allopurinol] with a beta-D-ribofuranosyl moiety at the 1-position. Allopurinol riboside has been reported in Trypanosoma brucei with data available. |
Molecular Formula |
C10H12N4O5
|
---|---|
Molecular Weight |
268.22608
|
Exact Mass |
268.081
|
CAS # |
16220-07-8
|
Related CAS # |
16220-07-8 (ribonucleoside);315-30-0 (free);
|
PubChem CID |
135407110
|
Appearance |
White to off-white solid powder
|
Density |
2.08g/cm3
|
Boiling Point |
570.9ºC at 760mmHg
|
Flash Point |
299ºC
|
Vapour Pressure |
3.62E-15mmHg at 25°C
|
Index of Refraction |
1.925
|
LogP |
-2.3
|
Hydrogen Bond Donor Count |
4
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
19
|
Complexity |
405
|
Defined Atom Stereocenter Count |
4
|
SMILES |
C1=NN(C2=C1C(=O)NC=N2)[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O
|
InChi Key |
KFQUAMTWOJHPEJ-DAGMQNCNSA-N
|
InChi Code |
InChI=1S/C10H12N4O5/c15-2-5-6(16)7(17)10(19-5)14-8-4(1-13-14)9(18)12-3-11-8/h1,3,5-7,10,15-17H,2H2,(H,11,12,18)/t5-,6-,7-,10-/m1/s1
|
Chemical Name |
1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5H-pyrazolo[3,4-d]pyrimidin-4-one
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~372.81 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.32 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (9.32 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (9.32 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7281 mL | 18.6407 mL | 37.2814 mL | |
5 mM | 0.7456 mL | 3.7281 mL | 7.4563 mL | |
10 mM | 0.3728 mL | 1.8641 mL | 3.7281 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.