AICAR phosphate

Cat No.:V29648 Purity: ≥98%
AICAR phosphate (Acadesine phosphate) is an adenosine analog and an AMPK activator.
AICAR phosphate Chemical Structure CAS No.: 681006-28-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
500mg
Other Sizes

Other Forms of AICAR phosphate:

  • Acadesine (AICAR; NSC-105823)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
AICAR phosphate (Acadesine phosphate) is an adenosine analog and an AMPK activator. AICAR phosphate regulates glucose and lipid metabolism and inhibits the production of pro-inflammatory cytokines and iNOS. AICAR phosphate is also an inhibitor (blocker/antagonist) of autophagy, YAP and mitophagy.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
HepG2 cells were treated with varied doses of AICAR (0.1-1.0 mM) for 12, 24, and 48 hours, respectively. The expression levels of IR-β were considerably reduced to 50%, 53% and 46% of the control at 48 hours with 0.25, 0.5 and 1.0 mM AICAR, respectively [1].
ln Vivo
For 14 days, 0.5 mg of the AMP-activated kinase (AMPK) activator AICAR (A) *g body weight wt-1*day-1 or saline control (C) was injected into 14-week-old male lean (L; 31.3 g body weight) wild-type and ob/ob (O; 59.6 g body weight) mice. The gastrocnemius, soleus, and plantaris muscles of the plantarflexor complex were removed for analysis twenty-four hours following the last injection, which included a 12-hour fast. All animals were then euthanized. OC mice had a reduced muscle mass (159±12 mg) compared to LC, LA, and OA mice (176±10, 178±9, and 166±16 mg, respectively), regardless of body weight variations [3]. Compared to the exercise group and the AICAR (0.5 mg/g body weight) group, the kidney weight of the untreated group was considerably higher. The exercise group had a higher heart weight than the other groups, but the AICAR-treated group's liver weight was considerably larger than that of the exercise group and the untreated group [4].
References
[1]. Nakamaru K, et al. AICAR, an activator of AMP-activated protein kinase, down-regulates the IR expression in HepG2 cells. Biochem Biophys Res Commun. 2005 Mar 11;328(2):449-54
[2]. Giri S, et al. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci. 2004 Jan 14;24(2):479-87.
[3]. Drake JC, et al. AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2010 Dec;299(6):R1546-54.
[4]. Pold R, et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats.Diabetes. 2005 Apr;54(4):928-34.
[5]. Ajaybabu V Pobbati, et al. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics. 2020 Feb 18;10(8):3622-3635
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H17N4O9P
Molecular Weight
356.2264
CAS #
681006-28-0
Related CAS #
AICAR;2627-69-2
SMILES
P(=O)(O[H])(O[H])O[H].O1[C@]([H])(C([H])([H])O[H])[C@]([H])([C@]([H])([C@]1([H])N1C([H])=NC(C(N([H])[H])=O)=C1N([H])[H])O[H])O[H]
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~280.72 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (5.84 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (5.84 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (5.84 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 33.33 mg/mL (93.56 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8072 mL 14.0359 mL 28.0718 mL
5 mM 0.5614 mL 2.8072 mL 5.6144 mL
10 mM 0.2807 mL 1.4036 mL 2.8072 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top