yingweiwo

Acetophenone

Alias: Acetophenone AcetylbenzeneAcetophenon Benzoylmethide Benzoyl methide
Cat No.:V10112 Purity: ≥98%
Acetophenone is an organic/chemical reagent .
Acetophenone
Acetophenone Chemical Structure CAS No.: 98-86-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
Other Sizes

Other Forms of Acetophenone:

  • Acetophenone-(phenyl-d5) (1-Phenylethan-1-One-(phenyl-d5))
  • Acetophenone-d8 (1-Phenylethan-1-One-d8)
  • Acetophenone-1,2-13C2 (1-Phenylethan-1-One-1,2-13C2)
  • Acetophenone-13C (acetophenone-13C; acetophenone-13C; methylphenylketone-13C)
  • Acetophenone-d3 (acetophenone-d3; acetophenone-d3; methylphenylketone-d3)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Acetophenone is an organic/chemical reagent .
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Metabolism / Metabolites
... In rats acetophenone appears to be precursor of not only mandelic acid and benzoylformic acid but benzoic acid as well. ...
The reductive cleavage of hydroperoxides by purified p450 in a reconstituted system containing reduced nicotinamide adenine dinucleotide phosphate was studied. ... With cumyl hydroperoxide, acetophenone was produced, but not cumyl alcohol, indicating that a rearrangement had taken place, probably involving radical intermediates, with the formation of an additional 1-carbon product.
Early studies identified 1-phenylethanol, benzoic acid, and mandelic acid as urinary metabolites of acetophenone in rabbits and dogs. /It was/ found that rabbits administered acetophenone by gavage excreted 47% of the dose as glucuronide conjugates of 1-phenylethanol and about 20% as hippuric acid. /Another study/... reported that 1-phenylethanol and its glucuronide conjugate constituted only about 4% of the dose for rabbits treated by the ip route. ... m-Hydroxyacetophenone, p-hydroxyacetophenone, and w-hydroxyacetophenone as minor urinary metabolites of acetophenone (<1% of the dose) in rabbits.
...10% of a 100 mg/kg ip dose of radiolabeled acetophenone was excreted as /carbon dioxide/ after 4 hr and that the amount increased to 30% after 13 hr. ... Mendelic acid was present in the urine of rats treated ip with acetophenone and ... this metabolite most likely arose from w-hydroxyacetophenone.
References

[1]. Reductive capabilities of different cyanobacterial strains towards acetophenone as a model substrate - Prospect of applications for chiral building blocks synthesis. Bioorg Chem. 2019 Feb 25. pii: S0045-2068(18)31467-6.

Additional Infomation
Acetophenone appears as a colorless liquid with a sweet pungent taste and odor resembling the odor of oranges. Freezes under cool conditions. Slightly soluble in water and denser than water. Hence sinks in water. Vapor heavier than air. A mild irritant to skin and eyes. Vapors can be narcotic in high concentrations. Used as a flavoring, solvent, and polymerization catalyst.
Acetophenone is a methyl ketone that is acetone in which one of the methyl groups has been replaced by a phenyl group. It has a role as a photosensitizing agent, an animal metabolite and a xenobiotic.
Acetophenone is used for fragrance in soaps and perfumes, as a flavoring agent in foods, and as a solvent for plastics and resins. Acute (short-term) exposure to acetophenone vapor may produce skin irritation and transient corneal injury in humans. No information is available on the chronic (long-term), reproductive, developmental, or carcinogenic effects of acetophenone in humans. EPA has classified acetophenone as a Group D, not classifiable as to human carcinogenicity.
Acetophenone has been reported in Camellia sinensis, Elsholtzia eriostachya, and other organisms with data available.
Acetophenone is a metabolite found in or produced by Saccharomyces cerevisiae.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C8H8O
Molecular Weight
120.15
Exact Mass
120.057
CAS #
98-86-2
Related CAS #
Acetophenone-(phenyl-d5);28077-64-7;Acetophenone-d8;19547-00-3;Acetophenone-1,2-13C2;190314-15-9;Acetophenone-13C;71777-36-1;Acetophenone-d3;17537-31-4
PubChem CID
7410
Appearance
Colorless to light yellow <19°C powder,>20°C liquid
Density
1.0±0.1 g/cm3
Boiling Point
202.0±0.0 °C at 760 mmHg
Melting Point
19.6ºC
Flash Point
82.2±0.0 °C
Vapour Pressure
0.3±0.4 mmHg at 25°C
Index of Refraction
1.512
LogP
1.66
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
1
Heavy Atom Count
9
Complexity
101
Defined Atom Stereocenter Count
0
SMILES
O=C(C([H])([H])[H])C1C([H])=C([H])C([H])=C([H])C=1[H]
InChi Key
KWOLFJPFCHCOCG-UHFFFAOYSA-N
InChi Code
InChI=1S/C8H8O/c1-7(9)8-5-3-2-4-6-8/h2-6H,1H3
Chemical Name
Acetophenone
Synonyms
Acetophenone AcetylbenzeneAcetophenon Benzoylmethide Benzoyl methide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~832.29 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (20.81 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (20.81 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (20.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 8.3229 mL 41.6146 mL 83.2293 mL
5 mM 1.6646 mL 8.3229 mL 16.6459 mL
10 mM 0.8323 mL 4.1615 mL 8.3229 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03305328 Completed Device: Transcranial Alternating Current
Stimulation
Anxiety Disorders and Symptoms
Sensory Disorders
Florida State University July 29, 2016 Not Applicable
NCT02177279 Completed Other: Visit A high wheat bran Bio-availability of Wheat Bran
Phytochemicals in the Human Gut
University of Aberdeen December 2011 Not Applicable
Contact Us