yingweiwo

Acelarin

Alias: GTPL 7389 CPF-31 CPF31Acelarin NUC-1031 NUC 1031 NUC1031GTPL7389 GTPL-7389
Cat No.:V7510 Purity: ≥98%
Acelarin (NUC-1031) is a extensively used nucleoside analog for protein conversion and enhancement of gemcitabine.
Acelarin
Acelarin Chemical Structure CAS No.: 840506-29-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Acelarin (NUC-1031) is a extensively used nucleoside analog for protein conversion and enhancement of gemcitabine.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Gemcitabine, a nucleoside analog, is frequently used to treat cancer; however, because cancer cells are highly sensitive to drug resistance, its effectiveness is restricted. Gemcitabine is shielded from several important anticancer pathways by the addition of a phosphoramidate motif. A number of prodrugs of gemcitabine phosphoramidate were prepared and tested for their ability to inhibit tumor growth in a variety of tumor cell lines. Of the compounds produced, NUC-1031 had strong effects in vitro.
ln Vivo
In a pancreatic xenograft model, ProTide significantly reduced tumor size and had less negative effects on body weight than the gemcitabine-treated group, suggesting a superior safety profile. The information clearly indicates that ProTides are stable in the presence of deaminases and do not depend on kinases or nucleoside transporters to function within tumor cells. ProTide NUC-1031 is presently progressing into a Phase I/II clinical investigation and has produced encouraging early efficacy signals, excellent security, and robust pharmacokinetic data showing notable increases in intracellular levels of gemcitabine triphosphate. Phosphoramidate compounds have the potential to be a significant source of novel, highly effective anticancer medications, resulting in a plethora of cutting-edge therapies intended to circumvent cancer resistance mechanisms and enhance patient outcomes [1].
References

[1]. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J Med Chem. 2014 Feb 27;57(4):1531-42.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H27F2N4O8P
Molecular Weight
580.4816
Exact Mass
580.153
CAS #
840506-29-8
PubChem CID
11169170
Appearance
White to off-white solid powder
LogP
3.616
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
12
Heavy Atom Count
40
Complexity
1020
Defined Atom Stereocenter Count
4
SMILES
C[C@@H](C(=O)OCC1=CC=CC=C1)NP(=O)(OC[C@@H]2[C@H](C([C@@H](O2)N3C=CC(=NC3=O)N)(F)F)O)OC4=CC=CC=C4
InChi Key
NHTKGYOMICWFQZ-KKQYNPQSSA-N
InChi Code
InChI=1S/C25H27F2N4O8P/c1-16(22(33)36-14-17-8-4-2-5-9-17)30-40(35,39-18-10-6-3-7-11-18)37-15-19-21(32)25(26,27)23(38-19)31-13-12-20(28)29-24(31)34/h2-13,16,19,21,23,32H,14-15H2,1H3,(H,30,35)(H2,28,29,34)/t16-,19+,21+,23+,40?/m0/s1
Chemical Name
benzyl (2S)-2-[[[(2R,3R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-4,4-difluoro-3-hydroxyoxolan-2-yl]methoxy-phenoxyphosphoryl]amino]propanoate
Synonyms
GTPL 7389 CPF-31 CPF31Acelarin NUC-1031 NUC 1031 NUC1031GTPL7389 GTPL-7389
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 36 mg/mL (~62.02 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.58 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.58 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.58 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7227 mL 8.6136 mL 17.2271 mL
5 mM 0.3445 mL 1.7227 mL 3.4454 mL
10 mM 0.1723 mL 0.8614 mL 1.7227 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02351765 COMPLETED Drug: Acelarin
Drug: Cisplatin
Ampullary Cancer
Biliary Tract Cancer
Cholangiocarcinoma
Gallbladder Cancer
The Christie NHS Foundation Trust 2016-01 Phase 1
NCT03610100 SUSPENDED Drug: Acelarin
Drug: Gemcitabine
Pancreatic Acinar Carcinoma
Pancreatic Neoplasms
The Clatterbridge Cancer Centre NHS Foundation Trust 2015-12 Phase 2
Phase 3
Contact Us