Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
Abiraterone metabolite 1 is the 5β-reduced form/metabolite of abiraterone (CB7598; Zytiga), which is an approved anticancer drug acting as an irreversible and selective CYP17 inhibitor.
Targets |
CYP17
|
---|---|
ln Vitro |
Abiraterone blocks androgen synthesis and prolongs survival in patients with castration-resistant prostate cancer, which is otherwise driven by intratumoral androgen synthesis. Abiraterone is metabolized in patients to Δ(4)-abiraterone (D4A), which has even greater anti-tumour activity and is structurally similar to endogenous steroidal 5α-reductase substrates, such as testosterone. Here, we show that D4A is converted to at least three 5α-reduced and three 5β-reduced metabolites in human serum. The initial 5α-reduced metabolite, 3-keto-5α-abiraterone, is present at higher concentrations than D4A in patients with prostate cancer taking abiraterone, and is an androgen receptor agonist, which promotes prostate cancer progression. In a clinical trial of abiraterone alone, followed by abiraterone plus dutasteride (a 5α-reductase inhibitor), 3-keto-5α-abiraterone and downstream metabolites were depleted by the addition of dutasteride, while D4A concentrations rose, showing that dutasteride effectively blocks production of a tumour-promoting metabolite and permits D4A accumulation. Furthermore, dutasteride did not deplete the three 5β-reduced metabolites, which were also clinically detectable, demonstrating the specific biochemical effects of pharmacological 5α-reductase inhibition on abiraterone metabolism. Our findings suggest a previously unappreciated and biochemically specific method of clinically fine-tuning abiraterone metabolism to optimize therapy.[1]
|
References |
Molecular Formula |
C24H33NO
|
---|---|
Molecular Weight |
351.524926900864
|
Exact Mass |
351.256
|
CAS # |
1940176-03-3
|
PubChem CID |
122638979
|
Appearance |
White to off-white solid powder
|
LogP |
5.4
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
1
|
Heavy Atom Count |
26
|
Complexity |
585
|
Defined Atom Stereocenter Count |
7
|
SMILES |
C[C@@]12C(C3C=NC=CC=3)=CC[C@H]1[C@@H]1CC[C@@H]3C[C@H](CC[C@]3(C)[C@H]1CC2)O
|
InChi Key |
UNJQRCXVHBZVTM-JSIIKIRASA-N
|
InChi Code |
InChI=1S/C24H33NO/c1-23-11-9-18(26)14-17(23)5-6-19-21-8-7-20(16-4-3-13-25-15-16)24(21,2)12-10-22(19)23/h3-4,7,13,15,17-19,21-22,26H,5-6,8-12,14H2,1-2H3/t17-,18+,19+,21+,22+,23+,24-/m1/s1
|
Chemical Name |
(3S,5R,8R,9S,10S,13S,14S)-10,13-dimethyl-17-pyridin-3-yl-2,3,4,5,6,7,8,9,11,12,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol
|
Synonyms |
Abiraterone metabolite 1; 1940176-03-3; (3S,5R,8R,9S,10S,13S,14S)-10,13-dimethyl-17-pyridin-3-yl-2,3,4,5,6,7,8,9,11,12,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol; (3beta,5beta)-17-(3-Pyridinyl)androst-16-en-3-ol; SCHEMBL18170331;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 25 mg/mL (~71.12 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 2.5 mg/mL (7.11 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (7.11 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (7.11 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.8448 mL | 14.2239 mL | 28.4479 mL | |
5 mM | 0.5690 mL | 2.8448 mL | 5.6896 mL | |
10 mM | 0.2845 mL | 1.4224 mL | 2.8448 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.