AA-115 (Alrizomadlin; APG115)

Alias: AA-115; APG115; AA 115; APG115; AA115; APG-115
Cat No.:V5403 Purity: = 99.13%
Alrizomadlin (AA-115; APG-115; AA115; APG115) is a novel, potent, orally bioactive and efficacious MDM2-p53 inhibitor with the potential to be used for the treatment of relapsed/refractory unresectable or metastatic melanoma.
AA-115 (Alrizomadlin; APG115) Chemical Structure CAS No.: 1818393-16-6
Product category: New15
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: = 99.13%

Product Description

Alrizomadlin (AA-115; APG-115; AA115; APG115) is a novel, potent, orally bioactive and efficacious MDM2-p53 inhibitor with the potential to be used for the treatment of relapsed/refractory unresectable or metastatic melanoma. It is being investigated in clinical trials for cancer treatment. As of September 23, 2021, Alrizomadlin has been granted a fast track designation by the FDA for the treatment of relapsed/refractory unresectable or metastatic melanoma who are relapsed or refractory to prior immune-oncologic agents, according to a press release by Ascentage Pharma. AA-115 has a very high affinity to MDM2 (Ki < 1 nM), potent cellular activity, and an excellent orally bioavailable pharmacokinetic profile. Compound 60 is capable of achieving complete and longlasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment.

Biological Activity I Assay Protocols (From Reference)
Targets
MDM2 (IC50 = 3.8 nM; Ki = 1 nM)
ln Vitro
With concentration-dependent effects, alrizomadlin (0.001-100 μM; 72 hours) suppresses cell proliferation in AGS and MKN45 cells, with IC50s of 18.9 ± 15.6 nM and 103.5 ± 18.3 nM, respectively [3]. To improve the effects of irradiation at various radiation doses, alrizomadlin (0.02 μM, 0.2 μM; Alrizomadlin (0.02 μM, 0.2 μM; 48) was induced by induction with wild-type p53 [3] at 48 h in G0/G1 phase in AGS and MKN45 cells. impact against ischemia[3]. In AGS and MKN45 cells, alrizomadlin (0.02 μM, 0.2 μM; 24 hours) activates p53 to improve radiation direction; stable p53 knockdown removes MDM2, p53, p21, PUMA, BAX, and Cleaved-caspase3 cells to influence progression. In p53 wide cell lines (TPC-1, KTC-1), alrizomadlin (0.3 μM, 1 μM, 3 μM, 10 μM; 24 hours) induces the production of the G2/M phase focused cell cycle marker γH2AX [3].
ln Vivo
In vivo radioresistance of adenocarcinoma tumors is improved by alrizomadlin (oral formulation; 100 mg/kg; once daily; 10 days) [3].
Enzyme Assay
Fluorescence Prolarization (FP)-Based Protein Binding Assay [5]
The binding affinity of MDM2 inhibitors was determined by an optimized, sensitive, and quantitative FP-based binding assay, using a recombinant human His-tagged MDM2 protein (residues 1–118) and a FAM tagged p53-based peptide as the fluorescent probe. The design of the fluorescent probe was based upon a previously reported high affinity p53-based peptidomimetic compound (5-FAM-βAla-βAla-Phe-Met-Aib-pTyr-(6-Cl-LTrp)-Glu-Ac3c-Leu-Asn-NH2).31 This tagged peptide was named as PMDM6-F. The equilibrium dissociation constant (Kd) of PMDM6-F to the MDM2 protein was determined to be 1.4 ± 0.3 nM by monitoring the total fluorescence polarization of mixtures composed with the fluorescent probe at a fixed concentration and the MDM2 protein with increasing concentrations up to full saturation. Fluorescence polarization values were measured using the Infinite M-1000 plate reader in Microfluor 1 96-well, black, round-bottom plates. In the saturation experiments, 1 nM of PMDM6-F and increasing concentrations of proteins were added to each well to a final volume of 125 μL in the assay buffer (100 mM potassium phosphate, pH 7.5, 100 μg/mL bovine γ-globulin, 0.02% sodium azide (Invitrogen), with 0.01% Triton X-100 and 4% DMSO). Plates were mixed and incubated at room temperature for 30 min with gentle shaking to ensure equilibrium. The polarization values in millipolarization units (mP) were measured at an excitation wavelength of 485 nm and an emission wavelength of 530 nm. The Kd value was then calculated by fitting the sigmoidal dose-dependent FP increases as a function of protein concentrations using Graphpad Prism 6.0 software. IC50 and Ki values of tested compounds were determined in a dose-dependent competitive binding experiment. Mixtures of 5 μL of the tested compound with different concentrations in DMSO and 120 μL of pre-incubated protein/fluorescent probe complex with fixed concentrations in the assay buffer (100 mM potassium phosphate, pH 7.5, 100 μg/mL bovine γ-globulin, 0.02% sodium azide, with 0.01% Triton X-100) were added into assay plates and incubated at room temperature for 30 min with gentle shaking. Final concentrations of the protein and fluorescent probe in the competitive assays were 10 and 1 nM, respectively, and final DMSO concentration was 4%. Negative controls containing protein/fluorescent probe complex only (equivalent to 0% inhibition), and positive controls containing free fluorescent probe only (equivalent to 100% inhibition), were included in each assay plate. FP values were measured as described above. IC50 values were determined by nonlinear regression fitting of the sigmoidal dose-dependent FP decreases as a function of total compound concentrations using Graphpad Prism 6.0 software. Ki values of competitive inhibitors were obtained directly by nonlinear regression fitting as well, based upon the Kd values of the probe to different proteins and concentrations of the proteins and probes in the competitive assays.
Cell Assay
Cell proliferation assay [3]
Cell Types: AGS and MKN45 cells
Tested Concentrations: 0.0001μM, 0.001μM, 0.01μM, 0.1μM, 1μM, 10μM, 100μM
Incubation Duration: 72 hrs (hours)
Experimental Results: and S phase reduction [4]. Inhibits cell proliferation in a concentration-dependent manner.

RT-PCR[3]
Cell Types: AGS and MKN45 Cell
Tested Concentrations: 0.02 μM, 0.2 μM
Incubation Duration: 48 hrs (hours)
Experimental Results: MDM2, p21, PUMA and BAX mRNA expression increased.

Cell cycle analysis[3]
Cell Types: AGS and MKN45 Cell
Tested Concentrations: 0.02 μM, 0.2 μM
Incubation Duration: 48 hrs (hours)
Experimental Results: Cell arrest in G0/G1 phase.

Apoptosis analysis [4]
Cell Types: DePTC p53 wide
Cell Types: TPC-1 cells, KTC-1 cells
Tested Concentrations: 0.3μM, 1μM, 3μM, 10μM
Incubation Duration: 24 hrs (hours)
Experimental Results: diminished number of cells in S phase, while cells accumulate in the G2/M phase.

Western Blot Analysis[3]
Cell Types: AGS and MKN45 Cell
Tested Concentrations: 0.2 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: MDM2 and p53 expression were enhanced, and stable knockdown of p53 eliminated them.
Animal Protocol
Animal/Disease Models: 4weeks old male BALB/c athymic nude mice, MKN45 cells [3]
Doses: 100 mg/kg
Route of Administration: po (po (oral gavage)) one time/day; 10-day
Experimental Results: Xenograft tumor growth diminished.
References
[1]. Angelo Aguilar, et al. 4-((3′R,4′S,5′R)-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development. J Med Chem. 2017 Apr 13; 60(7): 2819–2839.
[2]. A W Tolcher et al, A phase Ib/II study of APG-115 in combination with MK-3475 in patients with unresectable or metastatic melanomas or advanced solid tumors, Ann Oncol. 2019 Feb 1; 30(Supplement_1). pii: mdz027.
[3]. Hanjie Yi ea al, A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma, J Exp Clin Cancer Res. 2018 May 2;37(1):97.
[4]. Chen H, et al. Restoration of p53 using the novel MDM2-p53 antagonist APG115 suppresses dedifferentiated papillary thyroid cancer cells. Oncotarget. 2017 Jun 27;8(26):43008-43022.
[5]. Design of Chemically Stable, Potent, and Efficacious MDM2 Inhibitors That Exploit the Retro-Mannich Ring-Opening-Cyclization Reaction Mechanism in Spiro-oxindoles. J Med Chem. 2014 Dec 26; 57(24): 10486–10498.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C34H38CL2FN3O4
Molecular Weight
642.5934
Exact Mass
641.2223
Elemental Analysis
C, 63.55; H, 5.96; Cl, 11.03; F, 2.96; N, 6.54; O, 9.96
CAS #
1818393-16-6
Related CAS #
1818393-16-6
Appearance
White to off-white solid
LogP
7.63
SMILES
O=C1NC2=CC(Cl)=CC=C2[C@]13C4(CCCCC4)N(CC)[C@@H](C(NC5(CC6)CCC6(C(O)=O)CC5)=O)[C@@H]3C7=C(F)C(Cl)=CC=C7
InChi Key
YJCZPJQGFSSFOL-MNZPCBJKSA-N
InChi Code
InChI=1S/C34H38Cl2FN3O4/c1-2-40-27(28(41)39-32-16-13-31(14-17-32,15-18-32)30(43)44)25(21-7-6-8-23(36)26(21)37)34(33(40)11-4-3-5-12-33)22-10-9-20(35)19-24(22)38-29(34)42/h6-10,19,25,27H,2-5,11-18H2,1H3,(H,38,42)(H,39,41)(H,43,44)/t25-,27+,31?,32?,34+/m0/s1
Chemical Name
4-((3'R,4'S,5'R)-6''-chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2''-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3''-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic acid
Synonyms
AA-115; APG115; AA 115; APG115; AA115; APG-115
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~155.62 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (7.78 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (7.78 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.89 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5562 mL 7.7810 mL 15.5620 mL
5 mM 0.3112 mL 1.5562 mL 3.1124 mL
10 mM 0.1556 mL 0.7781 mL 1.5562 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top