yingweiwo

Isoflavone

Alias: 3 Phenylchromone; 3-Phenylchromone; Isoflavone; NSC 135405; NSC-135405; NSC135405
Cat No.:V60114 Purity: ≥98%
Isoflavones are soybean phytoestrogens and bioactive components found in several important legume crops such as soybeans, peanuts, lima beans, chickpeas, and garlic.
Isoflavone
Isoflavone Chemical Structure CAS No.: 574-12-9
Product category: Plants
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Isoflavones are soybean phytoestrogens and bioactive components found in several important legume crops such as soybeans, peanuts, lima beans, chickpeas, and garlic.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Following oral ingestion, serum isoflavone concentrations increase in a dose-dependent manner. Isoflavones are metabolized by gut microflora, where they need to undergo deglycosylation in order to be absorbed in the intestine. After oral ingestion, glycosylated isoflavones are rapidly deglycosylated, absorbed and metabolized in intestinal enterocytes and liver, entering the systemic circulation predominantly as conjugates with limited bioavailability. In humans, the mean time to reach peak plasma concentrations (Tmax) for conjugated and unconjugated genistein and daidzein are approximately 5-6 and 6-8 hours, respectively.
Renal excretion is the predominant route of elimination for dietary isoflavones, where approximately 10-60% of total administered dose is excreted in urine. Glucuronide conjugates account for the majority (70-90%) of the isoflavone content in urine, followed by sulphate conjugates (10-25%) and aglycone forms (1-10%). Fecal excretion is minimal, which accounts for 1-4% of the dietary isoflavone ingested.
Isoflavones are readily distributed to all tissues, and they are known to cross the placental barrier and blood brain barrier. They are also distributed to the extra-vascular compartments. In a human study, the volume of distribution of daidzein and genistein were 336.25 L and 258.76 L, respectively.
In a human study, the clearance rate for daidzein and genistein were 30.09 L/h and 21.85 L/h, respectively.
Metabolism / Metabolites
The conversion of glycosylated isoflavones to de glycosylated isoflavones begins in the oral cavity, wherein oral microflora and oral epithelium exhibit β-glucosidase activity. Further conversion is mediated by intestinal lactase phlorizin hydrolase on the luminal side of the intestinal brush border to form aglycones that diffuses into the enterocytes. The glycosylated isoflavones may also be converted to aglycone in the large intestines by the resident intestinal microflora. Isoflavone aglycones that enter the intestinal cell via passive diffusion are rapidly conjugated into sulfate or glucuronide conjugates. Under the anaerobic, reductive conditions of the colon, genistein undergoes reduction to form dihydrogenistein and further to 5-hydroxyequol, while daidzein is reduced to dihydrodaidzein and equol. Microbial cleavage of the Ring-C of isoflavones produces deoxybenzoin metabolites (DOBs), which retains similar biological activity as unchanged isoflavones and are passively absorbed. There is a large interindividual variation in isoflavone metabolism, leading to circulating concentrations of isoflavone metabolites and parent isoflavones varying up to hundreds-fold. About 25% of the non-Asian and 50% of the Asian population host the intestinal bacteria that convert the daidzein into the isoflavonoid equol, which is a beneficial isoflavonoid.
Biological Half-Life
The half-life of isoflavones is between 4 and 8 h. Daidzein has a longer intestinal half-life than genistein due to more rapid degradation of genistein. Individual half-life of daidzein and genistein in a human pharmacokinetic study were 7.75 h and 7.77 h, respectively.
Toxicity/Toxicokinetics
Protein Binding
No pharmacokinetic data available.
References

[1]. Effects of soy protein and isoflavone on hepatic fatty acid synthesis and oxidation and mRNA expression of uncoupling proteins and peroxisome proliferator-activated receptor gamma in adipose tissues of rats. J Nutr Biochem. 2008;19(10.

[2]. Isoflavone.

Additional Infomation
Pharmacodynamics
Isolated soy protein with isoflavones was shown to decrease LDL cholesterol levels in randomized trials assessed by the American Heart Association. In a study of postmenopausal women, daily dietary intake of 101 mg of aglycone isoflavones (indicating [DB01645] and [DB13182]) was associated with lowered LDL cholesterol and apolipoprotein B levels by 8% and reduced systolic and diastolic blood pressure by 6.8% in hypertensive women. In a meta-analysis of randomized controlled trials of menopausal women, soy isoflavones attenuated bone loss of the spine and decreased the levels of deoxypyridinoline, a bone resorption marker, while increasing serum bone-specific alkaline phosphatase, a bone formation marker. The findings from studies investigating the effects of soy consumption on menopausal symptoms, breast cancer, and prostate cancer remain somewhat controversial and inconclusive. Consumption of soy isoflavones may decrease the markers of cancer development and progression in prostate cells, including prostate-specific antigen (PSA), testosterone, and androgen receptor in patients with prostate cancer but not in normal subjects. Although epidemiologic data in Asian women demonstrate that high soy food intake is associated with protection against breast cancer, soy foods have little effect on intermediary markers of breast cancer risk and postmenopausal soy intake may not reduce the risk of developing breast cancer. However, preliminary studies show that soy food intake reduces tumor recurrence in breast cancer patients. Soy isoflavones reported to interfere with thyroid peroxidase, which are involved in the production of thyroid hormones.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H10O2
Molecular Weight
222.2387
Exact Mass
222.068
Elemental Analysis
C, 81.07; H, 4.54; O, 14.40
CAS #
574-12-9
PubChem CID
72304
Appearance
Light brown to brown solid powder
Density
1.2±0.1 g/cm3
Boiling Point
367.0±42.0 °C at 760 mmHg
Melting Point
150ºC
Flash Point
171.1±21.4 °C
Vapour Pressure
0.0±0.8 mmHg at 25°C
Index of Refraction
1.635
LogP
3.58
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
1
Heavy Atom Count
17
Complexity
326
Defined Atom Stereocenter Count
0
SMILES
O1C([H])=C(C2C([H])=C([H])C([H])=C([H])C=2[H])C(C2=C([H])C([H])=C([H])C([H])=C12)=O
InChi Key
GOMNOOKGLZYEJT-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10O2/c16-15-12-8-4-5-9-14(12)17-10-13(15)11-6-2-1-3-7-11/h1-10H
Chemical Name
3-phenylchromen-4-one
Synonyms
3 Phenylchromone; 3-Phenylchromone; Isoflavone; NSC 135405; NSC-135405; NSC135405
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~449.96 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.4996 mL 22.4982 mL 44.9964 mL
5 mM 0.8999 mL 4.4996 mL 8.9993 mL
10 mM 0.4500 mL 2.2498 mL 4.4996 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00204490 Active
Recruiting
Dietary Supplement: isoflavones
Dietary Supplement: carbohydrate
Breast Cancer The University of Texas Medical
Branch, Galveston
April 2004 Phase 2
NCT06047145 Active
Recruiting
Dietary Supplement: soy isoflavones
Dietary Supplement: Placebo
Skin Ageing The Archer-Daniels-Midland Company October 27, 2023 Not Applicable
NCT05667701 Not yet recruiting Drug: Soy isoflavone
Drug: matching placebo
Wheezing
Asthma in Children
Rajesh Kumar April 2004 Phase 2
Contact Us