yingweiwo

Colistin methanesulfonate sodium salt

Alias: CHEBI:59663; colistin A sulfomethate sodium; Colistin X; DSSTox_CID_25822;
Cat No.:V16720 Purity: ≥98%
The MIC of Colistin methanesulfonate sodium salt against P.
Colistin methanesulfonate sodium salt
Colistin methanesulfonate sodium salt Chemical Structure CAS No.: 8068-28-8
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
The MIC of Colistin methanesulfonate sodium salt against P. aeruginosa sensitive fungi is 4-16 mg/L.
Biological Activity I Assay Protocols (From Reference)
Targets
Bacterial cell wall synthessis; lipopolysaccharides and phospholipids in the outer cell membrane of gram-negative bacteria
ln Vitro
At the same multiples of the MIC, colistin methanesulfonate had less bactericidal activity than colistin. The two components, colistins A and B (1), that make up colistin and colistin methanesulfonate are uneven combinations of salts that may have distinct in vitro activities[1].
The in vitro pharmacodynamic properties of colistin and colistin methanesulfonate were investigated by studying the MICs, time-kill kinetics, and postantibiotic effect (PAE) against mucoid and nonmucoid strains of Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Twenty-three clinical strains, including multiresistant strains, and one type strain were selected for MIC determination. Eleven strains were resistant; MICs for these strains were >128 mg/liter. For the susceptible strains, MICs of colistin ranged from 1 to 4 mg/liter, while the MICs of colistin methanesulfonate were significantly higher and ranged from 4 to 16 mg/liter. The time-kill kinetics were investigated with three strains at drug concentrations ranging from 0.5 to 64 times the MIC. Colistin showed extremely rapid killing, resulting in complete elimination at the highest concentrations within 5 min, while colistin methanesulfonate killed more slowly, requiring a concentration of 16 times the MIC to achieve complete killing within 24 h. Colistin exhibited a significant PAE of 2 to 3 h at 16 times the MIC against the three strains after 15 min of exposure. For colistin methanesulfonate, PAEs were shorter at the concentrations tested. Colistin methanesulfonate had lower overall bactericidal and postantibiotic activities than colistin, even when adjusted for differences in MICs. Our data suggest that doses of colistin methanesulfonate higher than the recommended 2 to 3 mg/kg of body weight every 12 h may be required for the effective treatment of P. aeruginosa infections in cystic fibrosis patients[1].
Enzyme Assay
MIC determination.[1]
MICs were determined by both broth macrodilution and microdilution in cation-adjusted Mueller-Hinton broth ccording to NCCLS standards. Strains were considered resistant to colistin and colistin methanesulfonate if the MICs were ≥32 mg/liter.
Time-kill kinetics.[1]
The time-kill kinetics of four strains, ATCC 27853 and three clinical isolates, two of which were mucoid, were examined. The clinical isolates were selected in order to have a range of MICs within the susceptible category. The MICs of colistin and colistin methanesulfonate, respectively, for the four strains were as follows: ATCC 27853, 4 and 16 mg/liter; 18982, 4 and 8 mg/liter; 19056, 1 and 8 mg/liter; and 20223, 4 and 16 mg/liter. Colistin and colistin methanesulfonate were added to a logarithmic-phase broth culture of approximately 106 CFU/ml to yield concentrations of 0, 0.5, 1, 2, 4, 8, 16, 32, and 64 times the MIC for the strain under study. Subcultures for viable counts were performed on nutrient agar at 0, 5, 10, 15, 20, 25, 30, 45, and 60 min and 2, 3, 4, and 24 h after antibiotic addition. Viable counts were determined after 24 h of incubation of subcultures at 37°C.
PAE.[1]
The in vitro PAE was determined by the standard in vitro method for two of the three clinical strains noted above and the ATCC strain with both agents. For each experiment, P. aeruginosa (≈106 CFU/ml) in logarithmic phase growth was exposed for 15 min (for colistin) or 1 h (for colistin methanesulfonate) in Mueller-Hinton broth to the antibiotics at concentrations of 0.5, 1, 2, 4, 8, and 16 times the MIC. Fifteen minutes of exposure was used for colistin due to its very rapid bactericidal effect, to ensure that there were adequate numbers of bacteria for sampling at the end of the exposure interval. Antibiotic was removed by twice centrifuging at 3,000 × g for 10 min, decanting the supernatant, and resuspending in prewarmed broth. Viable counts were performed at 0, 1, 2, 3, 4, 5, 6, and 24 h on nutrient agar. A growth control was performed in the same fashion but without exposure to antibiotic. The colonies were counted after 24 h of incubation at 37°C. PAE was determined by comparing regrowth of treated and growth control cultures, using the standard formula of the time for the control culture to increase 10-fold subtracted from the time for the treated culture to do the same.
References
[1]. In Vitro Pharmacodynamic Properties of Colistin and Colistin Methanesulfonate against Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis. Antimicrob Agents Chemother. 2001 Mar; 45(3): 781–785.
Additional Infomation
Colistin A sodium methanesulfonate is colistin A in which each of the primary amino groups is converted into the corresponding aminomethanesulfonic acid sodium salt, commonly by treatment with formaldehyde followed by sodium bisulfite. It is an organic sodium salt, a polymyxin and a peptide antibiotic. It contains a colistimethate A(5-). It is functionally related to a colistin A.
The in vitro pharmacodynamic properties of colistin and colistin methanesulfonate were investigated by studying the MICs, time-kill kinetics, and postantibiotic effect (PAE) against mucoid and nonmucoid strains of Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Twenty-three clinical strains, including multiresistant strains, and one type strain were selected for MIC determination. Eleven strains were resistant; MICs for these strains were >128 mg/liter. For the susceptible strains, MICs of colistin ranged from 1 to 4 mg/liter, while the MICs of colistin methanesulfonate were significantly higher and ranged from 4 to 16 mg/liter. The time-kill kinetics were investigated with three strains at drug concentrations ranging from 0.5 to 64 times the MIC. Colistin showed extremely rapid killing, resulting in complete elimination at the highest concentrations within 5 min, while colistin methanesulfonate killed more slowly, requiring a concentration of 16 times the MIC to achieve complete killing within 24 h. Colistin exhibited a significant PAE of 2 to 3 h at 16 times the MIC against the three strains after 15 min of exposure. For colistin methanesulfonate, PAEs were shorter at the concentrations tested. Colistin methanesulfonate had lower overall bactericidal and postantibiotic activities than colistin, even when adjusted for differences in MICs. Our data suggest that doses of colistin methanesulfonate higher than the recommended 2 to 3 mg/kg of body weight every 12 h may be required for the effective treatment of P. aeruginosa infections in cystic fibrosis patients.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C58H115N16NA5O28S5
Molecular Weight
1759.89796376228
Exact Mass
1758.615
Elemental Analysis
C, 39.81; H, 6.05; N, 12.81; Na, 6.57; O, 25.60; S, 9.16
CAS #
8068-28-8
PubChem CID
46224595
Appearance
White to off-white solid powder
Hydrogen Bond Donor Count
18
Hydrogen Bond Acceptor Count
33
Rotatable Bond Count
39
Heavy Atom Count
112
Complexity
3430
Defined Atom Stereocenter Count
13
SMILES
CC[C@H](CCCCC([O-])=N[C@H](C(N[C@H](C(N[C@H](C([O-])=N[C@H]1CCNC([C@@H](NC([C@@H](N=C([O-])[C@@H](NC([C@@H](NC([C@H](N=C([O-])[C@@H](N=C1[O-])CCNCS(=O)(O)=O)CC(C)C)=O)CC(C)C)=O)CCNCS(=O)(O)=O)CCNCS(=O)(O)=O)=O)[C@H](O)C)=O)CCNCS(=O)(O)=O)=O)[C@H](O)C)=O)CCNCS(=O)(O)=O)C.[Na+].[Na+].[Na+].[Na+].[Na+]
InChi Key
IQWHCHZFYPIVRV-VLLYEMIKSA-I
InChi Code
InChI=1S/C58H110N16O28S5.5Na/c1-9-35(6)12-10-11-13-46(77)65-38(14-20-59-28-103(88,89)90)53(82)74-48(37(8)76)58(87)70-41(17-23-62-31-106(97,98)99)50(79)68-43-19-25-64-57(86)47(36(7)75)73-54(83)42(18-24-63-32-107(100,101)102)67-49(78)39(15-21-60-29-104(91,92)93)69-55(84)44(26-33(2)3)72-56(85)45(27-34(4)5)71-52(81)40(66-51(43)80)16-22-61-30-105(94,95)96;;;;;/h33-45,47-48,59-63,75-76H,9-32H2,1-8H3,(H,64,86)(H,65,77)(H,66,80)(H,67,78)(H,68,79)(H,69,84)(H,70,87)(H,71,81)(H,72,85)(H,73,83)(H,74,82)(H,88,89,90)(H,91,92,93)(H,94,95,96)(H,97,98,99)(H,100,101,102);;;;;/q;5*+1/p-5/t35-,36-,37-,38+,39+,40+,41+,42+,43+,44+,45-,47+,48+;;;;;/m1...../s1
Chemical Name
pentasodium;[2-[(2S,5R,8S,11S,14S,17S,22S)-17-[(1R)-1-hydroxyethyl]-22-[[(2S)-2-[[(2S,3R)-3-hydroxy-2-[[(2S)-2-[[(6R)-6-methyloctanoyl]amino]-4-(sulfonatomethylamino)butanoyl]amino]butanoyl]amino]-4-(sulfonatomethylamino)butanoyl]amino]-5,8-bis(2-methylpropyl)-3,6,9,12,15,18,23-heptaoxo-11,14-bis[2-(sulfonatomethylamino)ethyl]-1,4,7,10,13,16,19-heptazacyclotricos-2-yl]ethylamino]methanesulfonate
Synonyms
CHEBI:59663; colistin A sulfomethate sodium; Colistin X; DSSTox_CID_25822;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : 100 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 100 mg/mL (Infinity mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.5682 mL 2.8411 mL 5.6821 mL
5 mM 0.1136 mL 0.5682 mL 1.1364 mL
10 mM 0.0568 mL 0.2841 mL 0.5682 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us