5-Iodotubercidin (NSC-113939)

Alias: NSC 113939, 5-ITu; NSC113939; 5ITu; NSC-113939; 5 ITu; NSC 113939; 5 ITu
Cat No.:V2588 Purity: ≥98%
5-Iodotubercidin (also known as NSC 113939, 5-ITu)is a novel and potent adenosine kinase inhibitor with IC50 of 26 nM.
5-Iodotubercidin (NSC-113939) Chemical Structure CAS No.: 24386-93-4
Product category: Adenosine Kinase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

5-Iodotubercidin (also known as NSC 113939, 5-ITu) is a novel and potent adenosine kinase inhibitor with IC50 of 26 nM. It inhibits nucleoside transporter, CK1, insulin receptor tyrosine kinase, phosphorylase kinase, PKA, CK2 and PKC. 5-Iodotubercidin increases fatty acid oxidation activity and glycogen synthesis in hepatocytes. In cultured rat hepatocytes, 5-iodotubercidin inhibits both acetyl-CoA carboxylase and de novo synthesis of fatty acids and cholesterol.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
5-Iodotubercidin (NSC 113939) has IC50 values of 0.4, 3.5, 5-10, 5-10, 10.9, and 27.7 μM, respectively, and inhibits CK1, insulin receptor tyrosine kinase, phosphorylase kinase, PKA, CK2, and PKC[1]. 5-A significant drop in ATP concentration and a corresponding, minor increase in AMP concentration are caused by iodotubercidin (20 μM). 5. Iodotubercidin lowers the rates of fatty acid and cholesterol synthesis as well as the activity of ACC. The intracellular concentration of malonyl-CoA is significantly reduced by 5-iodotubercidin, which is consistent with the iodotubercidin-mediated Inhibition of ACC[4].
ln Vivo
5-Iodotubercidin (1 mL/kg, ip) has been shown to be effective against bicuculline-induced seizures after AKI was administered locally to the prepiriform cortex[2].
Animal Protocol
Dissolved in saline; 1, 2.5 and 5 mg/kg; i.p. injection
Male Mongolian gerbils
References
[1]. Massillon D, et al. Identification of the glycogenic compound 5-iodotubercidin as a general protein kinase inhibitor. Biochem J. 1994 Apr 1;299 (Pt 1):123-8.
[2]. Ugarkar BG, et al. Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem. 2000 Jul 27;43(15):2883-93.
[3]. García-Villafranca J, et al. Effects of 5-iodotubercidin on hepatic fatty acid metabolism mediated by the inhibition of acetyl-CoA carboxylase. Biochem Pharmacol. 2002 Jun 1;63(11):1997-2000.
[4]. De Antoni A, et al. A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B. J Cell Biol. 2012 Oct 15;199(2):269-84.
[5]. Acharya MM, et al. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction. Front Mol Neurosci. 2016 Jun 3;9:42
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C11H13IN4O4
Molecular Weight
392.15
CAS #
24386-93-4
Related CAS #
24386-93-4
SMILES
NC1=C2C(N([ C@H]3[ C@H](O)[ C@H](O)[C@@H](CO)O3)C=C2I)=NC=N1
Synonyms
NSC 113939, 5-ITu; NSC113939; 5ITu; NSC-113939; 5 ITu; NSC 113939; 5 ITu
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:78 mg/mL (198.9 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.38 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.38 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.38 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 2.5 mg/mL (6.38 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.5 mg/mL (6.38 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: ≥ 0.5 mg/mL (1.28 mM) (saturation unknown) in 1% DMSO 99% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5500 mL 12.7502 mL 25.5004 mL
5 mM 0.5100 mL 2.5500 mL 5.1001 mL
10 mM 0.2550 mL 1.2750 mL 2.5500 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top