yingweiwo

Doxylamine

Cat No.:V70366 Purity: ≥98%
Doxylamine, a first-generation antihistamine, is a histamine (H1) receptor blocker (antagonist).
Doxylamine
Doxylamine Chemical Structure CAS No.: 469-21-6
Product category: Histamine Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Doxylamine:

  • Doxylamine Succinate
  • Doxylamine D5 succinate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Doxylamine, a first-generation antihistamine, is a histamine (H1) receptor blocker (antagonist). Doxylamine is also a local analgesic and effective hypnotic.
Biological Activity I Assay Protocols (From Reference)
Targets
H1 Receptor
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Readily absorbed via the gastrointestinal tract.
H1 antagonists are eliminated more rapidly by children than by adults and more slowly in those with severe liver disease. /H1 Receptor Antagonists/
The H1 antagonists are well absorbed from the gastrointestinal tract. Following oral administration, peak plasma concentrations are achieved in 2 to 3 hours ... . /H1 Receptor Antagonists/
Elimination and metabolic profiles of the glucuronide products of doxylamine and its N-demethylated metabolites were determined after the oral admin of (14)C-doxylamine succinate (13.3 and 133 mg/kg doses) to male and female Fischer 344 rats. The cumulative urinary and fecal eliminations of these conjugated doxylamine metaboites at the 13.3 mg/kg dose were 44.4 + or - 4.2% and 47.3 + or - 8.1% of the total recoverd dose for male and female rats, respectively. The cumulative urinary and fecal eliminations of conjugated doxylamine metabolites at the 133 mg/kg dose were 55.2 + or - 2.6% and 47.9 + or - 2.5% of the total recovered dose for male and female rats, respectively. The conjugated doxylamine metabolites that were isolated, quantitiated, and identified are doxylamine O-glucuronide, N-desmethyl-doxylamine O-glucuronide, and N,N-didesmethyldoxylamine O-glucuronide.
The elimination of doxylamine and metabolites was determined after iv admin of (14)C-doxylamine succinate at 0.7 and 13.3 mg/kg to the adult female rhesus monkey. Although the total recovery of radioactivity was the same for the low- and high-dose studies (90.2%), the rate of plasma elimination of doxylamine and its demethylated metabolite (desmethyldoxylamine) was slower for the high dose group. The 24 hr urinary excretion of doxylamine metabolites, desmethyl- and didesmethyldoxylamine, was significantly incr and the polar doxylamine metabolites were significantly decr as the iv doxylamine succinate dose was incr. The plasma elimination of GC-detected doxylamine was determined after po admin of Bendectin (doxylamine succinate and pyridoxine hydrochloride) /also contains dicyclomine hydrochloride/ at 7, 13.3, and 27 mg/kg to adult female rhesus monkeys. As the dose incr, the clearance of doxylamine decr. A statistically evaluated fit of the po data to a single-compartment, parallel first-order elimination model and a single-compartment, parallel first- and second-order (Michaelis-Menten) elimination model indicated that the more complex model containing the second-order process was most consistent with the observed elimination data. /Doxylamine succinate/
Metabolism / Metabolites
Hepatic.
The conjugated doxylamine metabolites that were isolated, quantitiated, and identified are doxylamine O-glucuronide, N-desmethyl-doxylamine O-glucuronide, and N,N-didesmethyldoxylamine O-glucuronide.
Analysis of doxylamine N-oxide and pyrilamine N-oxide as synthetic standards and biologically derived metabolites by thermospray mass spectrometry (TSP/MS) provided (M + H) + ions for each metabolite. ... In addition, TSP/MS and TSP/MS/MS analysis of ring-hydroxylated N-desmethyldoxylamine ... is also reported.
Hepatic.
Half Life: 10 hours
Biological Half-Life
10 hours
The drug has an elimination half-life of about 10 hours in healthy adults.
Toxicity/Toxicokinetics
Toxicity Summary
Like other antihistamines, doxylamine acts by competitively inhibiting histamine at H1 receptors. It also has substantial sedative and anticholinergic effects.
Hepatotoxicity
Despite widespread use over many decades, doxylamine has not been linked to liver test abnormalities or to clinically apparent liver injury. The reason for its safety may relate its short half-life and limited duration of use.
Likelihood score: E (unlikely to be a cause of clinically apparent liver injury).
References on the safety and potential hepatotoxicity of antihistamines are given together after the Overview section on Antihistamines.
Drug Class: Antihistamines
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Small occasional doses of doxylamine would not be expected to cause any adverse effects in breastfed infants. Larger doses or more prolonged use may cause drowsiness and other effects in the infant or decrease the milk supply, particularly in combination with a sympathomimetic such as pseudoephedrine or before lactation is well established.
◉ Effects in Breastfed Infants
Relevant published information on doxylamine was not found as of the revision date. In one telephone follow-up study, mothers reported irritability and colicky symptoms 10% of infants exposed to various antihistamines and drowsiness was reported in 1.6% of infants. None of the reactions required medical attention.
◉ Effects on Lactation and Breastmilk
Antihistamines in relatively high doses given by injection can decrease basal serum prolactin in nonlactating women and in early postpartum women. However, suckling-induced prolactin secretion is not affected by antihistamine pretreatment of postpartum mothers. Whether lower oral doses of antihistamines have the same effect on serum prolactin or whether the effects on prolactin have any consequences on breastfeeding success have not been studied. The prolactin level in a mother with established lactation may not affect her ability to breastfeed.
Interactions
Concurrent use may potentiate the CNS depressant effects of either these medications /alcohol or other CNS depression-producing medications/ or antihistamines; also, concurrent use of maprotiline or tricyclic antidepressants may potentiate the anticholinergic effects of either antihistamines or these medications. /Antihistamines/
Anticholinergic effects may be potentiated when these medications /anticholinergics or other medications with anticholinergic activity/ are used concurrently with antihistamines; patients should be advised to report occurrence of gastrointestinal problems promptly since paralytic ileus may occur with concurrent therapy. /Antihistamines/
Concurrent use of monoamine oxidase (MAO) inhibitors with antihistamines may prolong the intensify the anticholinergic and CNS depressant effects of antihistamines; concurrent use is not recommended. /Antihistamines/
Concurrent use /of ototoxic medications/ with antihistamines may mask the symptoms of ototoxicity such as tinnitus, dizziness, or vertigo. /Antihistamines/
For more Interactions (Complete) data for DOXYLAMINE (7 total), please visit the HSDB record page.
References

[1]. Sjöqvist F, Lasagna L. The hypnotic efficacy of doxylamine. Clin Pharmacol Ther. 1967;8(1):48-54.

[2]. Subcutaneous infiltration of doxylamine on cutaneous analgesia in rats. Pharmacol Rep. 2018;70(3):565-569.

[3]. Jackson CD, Blackwell BN. Subchronic studies of doxylamine in B6C3F1 mice. Fundam Appl Toxicol. 1988;10(2):254-261.

Additional Infomation
Doxylamine is a clear colorless liquid. (NTP, 1992)
Doxylamine is a member of pyridines and a tertiary amine. It has a role as a histamine antagonist, a cholinergic antagonist, a sedative, an antiemetic, a H1-receptor antagonist, an anti-allergic agent and an antitussive.
Histamine H1 antagonist with pronounced sedative properties. It is used in allergies and as an antitussive, antiemetic, and hypnotic. Doxylamine has also been administered in veterinary applications and was formerly used in parkinsonism.
Doxylamine is an Antihistamine. The mechanism of action of doxylamine is as a Histamine Receptor Antagonist.
Doxylamine is a first generation antihistamine that is used for symptoms of allergic rhinitis and the common cold and as a short acting sedative. Doxylamine has not been linked to instances of clinically apparent acute liver injury.
Doxylamine is a first generation ethanolamine with antiinflammatory, sedative and antihistamine properties. Doxylamine competitively inhibits the histamine 1 (H1) receptor, thereby preventing the action of endogenous histamine as well as the subsequent release of pro-inflammatory mediators from basophils and mast cells. This agent acts as an inverse agonist that combines with, and stabilizes the inactive form of the H1-receptor, shifting the H1 receptor equilibrium toward the inactive state. This results in downregulation of nuclear factor-kappaB (NF-kappaB) and NF-kappaB dependent antigen presentation, chemotaxis, as well as expression of cell-adhesion molecules and pro-inflammatory cytokines.
Histamine H1 antagonist with pronounced sedative properties. It is used in allergies and as an antitussive, antiemetic, and hypnotic. Doxylamine has also been administered in veterinary applications and was formerly used in parkinsonism. [PubChem]
Histamine H1 antagonist with pronounced sedative properties. It is used in allergies and as an antitussive, antiemetic, and hypnotic. Doxylamine has also been administered in veterinary applications and was formerly used in PARKINSONISM.
See also: Doxylamine Succinate (has salt form).
Drug Indication
Used alone as a short-term sleep aid, in combination with other drugs as a night-time cold and allergy relief drug. Also used in combination with Vitamin B6 (pyridoxine) to prevent morning sickness in pregnant women.
Mechanism of Action
Like other antihistamines, doxylamine acts by competitively inhibiting histamine at H1 receptors. It also has substantial sedative and anticholinergic effects.
Therapeutic Uses
Anti-Allergic Agents; Antiemetics; Antitussive Agents; Histamine H1 Antagonists; Sedatives, Nonbarbiturate
ANTIHISTAMINIC AGENT PROBABLY EFFECTIVE FOR SYMPTOMATIC TREATMENT OF... ALLERGIC RHINITIS, VASOMOTOR RHINITIS, ALLERGIC CONJUNCTIVITIS DUE TO INHALANT ALLERGENS & FOODS, MILD, UNCOMPLICATED ALLERGIC SKIN MANIFESTATIONS OF URTICARIA & ANGIOEDEMA, AMELIORATION & PREVENTION OF...REACTIONS TO BLOOD OR PLASMA... /SUCCINATE/
VET USE: AS ARE OTHER ANTIHISTAMINES IN STOMATITIS, LAMINITIS, URTICARIA, RESPIRATORY DISORDERS, BLOAT, & INDIGESTION IN CATTLE; IN URTICARIA & LAMINITIS IN HORSES; IN DERMATITIS, URTICARIA, MOTION SICKNESS, & IN PREVENTION OF DEPIGMENTATION IN BLUE NOSED DOGS. /SUCCINATE/
Antihistamines are indicated in the prophylactic and symptomatic treatment of perennial and seasonal allergic rhinitis, vasomotor rhinitis, and allergic conjunctivitis due to inhalant allergens and foods. /Antihistamines; Included in US product labeling/
For more Therapeutic Uses (Complete) data for DOXYLAMINE (9 total), please visit the HSDB record page.
Drug Warnings
PERSONS TAKING ANTIHISTAMINES SHOULD BE ALERTED TO THEIR SEDATIVE EFFECTS & SHOULD BE CAUTIONED NOT TO DRIVE AUTOMOBILE, FLY AIRPLANE, OR OPERATE HAZARDOUS MACHINERY... /ANTIHISTAMINES/
VET: USE OF ANTIHISTAMINES IN STOMATITIS, GANGRENOUS MASTITIS, METRITIS, & TOXIC ENGORGEMENTS HAVE BEEN QUESTIONED. /SUCCINATE/
Like other antihistamines, doxylamine should not be used in premature or full-term neonates. Safety and efficacy of doxylamine as a nighttime sleep aid in children younger than 12 years of age have not been established. In addition, children may be more prone than adults to paradoxically experience CNS stimulation rather than sedation when antihistamines are used as nighttime sleep aids. Because doxylamine may cause marked drowsiness that may be potentiated by other CNS depressants (e.g., sedatives, tranquilizers), the antihistamine should be used in children receiving one of these drugs only under the direction of a physician. As an antihistamine, doxylamine should be used in children 2 to younger than 6 years of age only under the direction of a physician; use of the drug in children younger than 2 years of age is not recommended.
Because of the potential for serious adverse reactions to antihistamines in nursing infants, a decision should be made whether to discontinue nursing or doxylamine, taking into account the importance of the drug to the woman.
For more Drug Warnings (Complete) data for DOXYLAMINE (11 total), please visit the HSDB record page.
Pharmacodynamics
Doxylamine is an antihistamine commonly used as a sleep aid. This drug is also used to relieve symptoms of hay fever (allergic rhinitis), hives (rash or itching), and other allergic reactions. Doxylamine is a member of the ethanolamine class of antihistamines and has anti-allergy power far superior to virtually every other antihistamine on the market, with the exception of diphenhydramine (Benadryl). It is also the most powerful over-the-counter sedative available in the United States, and more sedating than many prescription hypnotics. In a study, it was found to be superior to even the barbiturate, phenobarbital for use as a sedative. Doxylamine is also a potent anticholinergic.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H22N2O
Molecular Weight
270.3695
Exact Mass
270.173
CAS #
469-21-6
Related CAS #
Doxylamine succinate;562-10-7;Doxylamine-d5 succinate;1216840-94-6
PubChem CID
3162
Appearance
LIQ
Density
1.043 g/cm3
Boiling Point
364.9ºC at 760 mmHg
Melting Point
25°C
Flash Point
174.5ºC
Index of Refraction
1.5486 (estimate)
LogP
2.923
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
6
Heavy Atom Count
20
Complexity
276
Defined Atom Stereocenter Count
0
SMILES
CC(C1=CC=CC=C1)(C2=CC=CC=N2)OCCN(C)C
InChi Key
HCFDWZZGGLSKEP-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H22N2O/c1-17(20-14-13-19(2)3,15-9-5-4-6-10-15)16-11-7-8-12-18-16/h4-12H,13-14H2,1-3H3
Chemical Name
N,N-dimethyl-2-(1-phenyl-1-pyridin-2-ylethoxy)ethanamine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.6986 mL 18.4932 mL 36.9864 mL
5 mM 0.7397 mL 3.6986 mL 7.3973 mL
10 mM 0.3699 mL 1.8493 mL 3.6986 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us