Size | Price | Stock | Qty |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
β-Anhydroicaritin is a naturally occurring bioactive compound isolated from Boswellia carterii Birdware with various biological activity such as antiosteoporosis, estrogen regulation and antitumor effects. It can decrease the production of NO, IL-10, TNF-α, MCP-1 and IL-6 in inperitonitis mice.
Targets |
IL-10; MMP-3; IL-6
|
---|---|
ln Vitro |
β-anhydroicaritin Mannich base derivatives possessing moderate to potent cytotoxicity against these three cancer cells (Hela, HCC1954 and SK-OV-3). Compound 15 and 19 showed selective cytotoxicity against HCC1954 cells and Hela cells respectively, they are potential and selective anticancer agent and worthy of further development.[1]
|
ln Vivo |
β-anhydroicaritin ameliorated the degradation of periodontal tissue and inhibited the synthesis and secretion of TNF-α and MMP-3 in diabetic rats. In conclusion, the results of the present study suggest that β-anhydroicaritin may be used in the treatment of periodontitis in patients with diabetes. However, the mechanisms by which β-anhydroicaritin ameliorates periodontal degradation, i.e. whether it directly inhibits or regulates the body’s metabolic function through the elimination of ONOO− and further inhibits TNF-α and MMP-3 expression indirectly, remains to be elucidated. Further investigations are required to shed light upon these questions.[2]
|
Animal Protocol |
Male Wistar rats (n=40; three months old) were randomly divided into four groups: Normal control group, diabetes group, diabetes + β-anhydroicaritin group and diabetes + urate group, (n=10 in each group). Following an overnight fast, diabetes was induced by intraperitoneal injection of streptozocin. The rats were maintained for 12 weeks and the blood sugar, urine sugar and body weight were assessed in week 12. Histological changes of the periodontal tissues were observed by hematoxylin and eosin staining, and the expression levels of TNF-α and MMP-3 were observed by immunohistochemistry. Following 12 weeks, the TNF-α grey value in the diabetes group was significantly lower compared with that in the control group (P<0.05), while no significant difference was observed between TNF-α levels in the diabetes + β-anhydroicaritin group, diabetes + urate group and the control group (P>0.05). However, TNF-α levels in the diabetes + β-anhdroicaritin group and diabetes + urate group were significantly higher compared with those in the diabetes group (P<0.05), and those in the diabetes + β-anhydroicaritin group were lower compared with those in the diabetes + urate group (P<0.05). The MMP-3 grey value in the diabetes group was significantly lower compared with that in the control group (P<0.05), while no significant difference was observed between MMP-3 levels in the diabetes + β-anhydroicaritin group, diabetes + urate group and the control group (P>0.05). However, MMP-3 levels the diabetes + β-anhydroicaritin group and diabetes + urate group were significantly higher compared with those in the diabetes group (P<0.05), and those in the diabetes + β-anhydroicaritin group were lower compared with those in the diabetes + urate group (P<0.01). β-anhydroicaritin normalized the expression levels of TNF-α and MMP-3 in the periodontal tissue of diabetic rats and led to the recovery of the changes in the morphological structure of the periodontal tissue.[2]
|
References |
|
Additional Infomation |
beta-Anhydroicaritin has been reported in Epimedium brevicornu with data available.
|
Molecular Formula |
C21H20O6
|
---|---|
Molecular Weight |
368.3799
|
Exact Mass |
368.125
|
CAS # |
38226-86-7
|
PubChem CID |
14583584
|
Appearance |
Light yellow to yellow solid
|
Source |
Flavonoids/Flavonols from Boswellia carterii Birdware
|
LogP |
4.2
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
27
|
Complexity |
618
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
PPCHTBBOSVKORE-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C21H20O6/c1-21(2)9-8-13-15(27-21)10-14(22)16-17(23)18(24)19(26-20(13)16)11-4-6-12(25-3)7-5-11/h4-7,10,22,24H,8-9H2,1-3H3
|
Chemical Name |
3,5-dihydroxy-2-(4-methoxyphenyl)-8,8-dimethyl-9,10-dihydropyrano[2,3-h]chromen-4-one
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~8.33 mg/mL (~22.61 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.7146 mL | 13.5729 mL | 27.1459 mL | |
5 mM | 0.5429 mL | 2.7146 mL | 5.4292 mL | |
10 mM | 0.2715 mL | 1.3573 mL | 2.7146 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.