Flufenamic acid (CI-440; CN-27554)

Alias: CI-440; CN-27554; INF-1837; CI 440; CN 27554; INF 1837; CI440; CN27554; INF1837
Cat No.:V1968 Purity: ≥98%
Flufenamic Acid (CI-440; CN-27554) is an anti-inflammatory agent of the NSAIDs (non-steroidal anti-inflammatory agent) class.
Flufenamic acid (CI-440; CN-27554) Chemical Structure CAS No.: 530-78-9
Product category: COX
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
5g
10g
50g
100g
Other Sizes

Other Forms of Flufenamic acid (CI-440; CN-27554):

  • Flufenamic acid-d4
  • Flufenamic acid-13C6
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Flufenamic Acid (CI-440; CN-27554) is an anti-inflammatory agent of the NSAIDs (non-steroidal anti-inflammatory agent) class. It inhibits cyclooxygenase (COX), activates AMPK, and also modulates ion channels, blocking chloride channels and L-type Ca2+ channels, modulating non-selective cation channels (NSC), activating K+ channels. . Flufenamic acids reversibly inhibits ICl(Ca) in Xenopus oocytes with IC50 of 28 mM, elicit in response to depolarizing voltage steps, in a dose-dependent manner, with no effect on the shape of the current-voltage curve. Flufenamic acids blocks Ca2(+)-activated non-selective cation channels in inside-out patches from the basolateral membrane of rat exocrine pancreatic cells with IC50 of 10 μM.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Cyclooxygenase (COX) is inhibited by the nonsteroidal anti-inflammatory medication flufenamic acid. Furthermore, it has the ability to control non-selective cation channels (NSC), block L-type Ca2+ channels, regulate ion channels, and modify chloride channels. K+ channel activation. A minimum of two TRP channels (C6 and A1) are activated by flufenamic acid, while numerous TRP channels (C3, C7, M2, M3, M4, M5, M7, M8, V1, V3, and V4) are inhibited [1]. CaMKKβ, a calcium/calmodulin-dependent protein kinase kinase beta, is directly stimulated by flufenamic acid to cause AMPK activation in T84 cells [2]. Moreover, Flufenamic acid (FFA; 5-50 μM) inhibits Cl- secretion that is dependent on cAMP in intact T84 cells, apical ICl-mediated by CFTR is inhibited, and Ca2+-dependent Cl- secretion is blocked in a dose-dependent manner. At 100 μM, the IC50 of FFA's Cl-secretion is approximately 10 μM, and it almost completely blocks the T84 cell monolayer. However, it has no effect on Na+-K+ ATPase or NKCC in T84 cells [3].
ln Vivo
In a mouse model of Vibrio cholerae El Tor variant (EL)-induced diarrhea, flufenamic acid (50 mg/kg, ip) exhibits anti-inflammatory effects. At 20 mg/kg, it greatly reduces EL-induced intestinal secretion and breakdown of the barrier. Furthermore, in the gut of mice infected with EL, flufenamic acid stimulates AMPK activation and suppresses pro-inflammatory mediator production and NF-κB nuclear translocation [2].
Animal Protocol
50 mg/kg, i.p.
Mouse
References
[1]. Guinamard R, et al. Flufenamic acid as an ion channel modulator. Pharmacol Ther. 2013 May;138(2):272-84.
[2]. Pongkorpsakol P, et al. Flufenamic acid protects against intestinal fluid secretion and barrier leakage in a mouse model of Vibrio cholerae infection through NF-κB inhibition and AMPK activation. Eur J Pharmacol. 2017 Mar 5;798:94-104.
[3]. Pongkorpsakol P, et al. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells. J Pharmacol Sci. 2017 Jun;134(2):93-100.
[4]. Pobbati AV, et al. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Structure. 2015;23(11):2076-2086
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H10F3NO2
Molecular Weight
281.23
CAS #
530-78-9
Related CAS #
Flufenamic acid-d4;1185071-99-1;Flufenamic acid-13C6;1325559-30-5
SMILES
FC(C1C([H])=C([H])C([H])=C(C=1[H])N([H])C1=C([H])C([H])=C([H])C([H])=C1C(=O)O[H])(F)F
InChi Key
LPEPZBJOKDYZAD-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H10F3NO2/c15-14(16,17)9-4-3-5-10(8-9)18-12-7-2-1-6-11(12)13(19)20/h1-8,18H,(H,19,20)
Chemical Name
2-((3-(trifluoromethyl)phenyl)amino)benzoic acid
Synonyms
CI-440; CN-27554; INF-1837; CI 440; CN 27554; INF 1837; CI440; CN27554; INF1837
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:56 mg/mL (199.1 mM)
Water:<1 mg/mL
Ethanol:56 mg/mL (199.1 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.89 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.89 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.5558 mL 17.7790 mL 35.5581 mL
5 mM 0.7112 mL 3.5558 mL 7.1116 mL
10 mM 0.3556 mL 1.7779 mL 3.5558 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top