Puromycin 2HCl (CL13900)

Alias: Puromycin Dihydrochloride; Puromycin 2HCl; CL13900 2HCl; CL-13900 dihydrochloride; CL 13900 dihydrochloride; Puromycine; NSC-3055; NSC3055; NSC 3055
Cat No.:V1926 Purity: =98.49%
Puromycin 2HCl (CL13900), an analog of aminoacyl-tRNA (anaminonucleoside), is a potent antibiotic which acts as a protein synthesis inhibitor.
Puromycin 2HCl (CL13900) Chemical Structure CAS No.: 58-58-2
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Puromycin 2HCl (CL13900):

  • Puromycin (CL13900)
  • Puromycin Aminonucleoside (NSC-3056)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Purity: ≥98%

Purity: =98.49%

Product Description

Puromycin 2HCl (CL13900), an analog of aminoacyl-tRNA (anaminonucleoside), is a potent antibiotic which acts as a protein synthesis inhibitor. It inhibits the incorporation of aminoacyl-tRNA into the C-terminal on a synthesizing polypeptide, resulting in the premature termination of the polypeptide chain. Puromycin is toxic to the growth of various eukaryote cells including mammalian cells. Concentrations of puromycin sufficient to inhibit the cell growth of mammalian cells range from 0.5-10 μg/ml. IC90s for puromycin to inhibit the growth of Plasmodium falciparum and Giardia lamblia are 60 ng/ml and 54 μg/ml, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
Aminoglycoside
ln Vitro
Puromycin causes the accumulation of small peptides while preventing the synthesis of proteins following the formation of aminoacyl-sRNA. The release of partial peptide chains as a consequence of the splitting of ribosome-bound peptidyl-sRNA4 appears to be the cause of both of these effects. [1].
An analog of the 3' end of aminoacyl-tRNA, puromycin links non-specifically to expanding polypeptide chains, causing premature termination of translation. Puromycin inhibits growth in two different ways. The first way is by serving as an acceptor substrate and attacking the P site's peptidyl-tRNA to create a developing peptide. The second method involves binding to the A' site in competition with aminoacyl-tRNA[2].
Puromycin incorporation in neosynthesized proteins, when used in small quantities, directly correlates with the rate of mRNA translation in vitro. There are benefits to using puromycin immunodetection instead of radioactive amino acid labeling. By using immunofluorescence microscopy on individual cells and fluorescence-activated cell sorting on heterogeneous cell populations, it enables the direct assessment of translation activity[3].
ln Vivo
In animals of 25 days old, 180 or 120 min of previous exposure to puromycin dihydrochloride inhibited subsequent amino acid transport. In animals of 50 days old, however, puromycin dihydrochloride failed to inhibit α-aminoisobutyric acid uptake.
Cell Assay
When treated with puromycin dihydrochloride at different concentrations, the growth rates of T. thermophila changed. In the first 24 h, puromycin dihydrochloride at a concentration of 50 µg/ml reduced the growth rate by 80%, but did not completely block the cell growth; until 72 h, there was a gradual cell number increase. At 100 μg/ml, puromycin dihydrochloride completely blocked the cell growth; in the first 48 h under this condition, almost all of the cells died, surviving cells grew rapidly after 48 h. Puromycin dihydrochloride at 150 μg/ml completely inhibited the cell growth for 72 h. By 72 h, the majority of cells died, and then surviving cells grew. Puromycin dihydrochloride at 200 μg/ml made almost all the cells die by 48 h, and hence no survivors appeared.
Animal Protocol


References

[1]. Proc Natl Acad Sci U S A. 1964 Apr;51:585-92.

[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.

[3]. Nat Methods. 2009 Apr;6(4):275-7.

[4]. Pharmacol Rev.1964 Sep;16:223-43

[5]. Biol Reprod.2005 Feb;72(2):309-15.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H29N7O5.2HC
Molecular Weight
544.43
Elemental Analysis
C, 48.54; H, 5.74; Cl, 13.02; N, 18.01; O, 14.69
CAS #
58-58-2
Related CAS #
Puromycin-d3 dihydrochloride;53-79-2;58-60-6;
Appearance
White to light yellow solid powder
LogP
0.93
tPSA
160.88
SMILES
O=C(N[C@@H]1[C@@H](CO)O[C@@H](N2C=NC3=C(N(C)C)N=CN=C23)[C@@H]1O)[C@@H](N)CC4=CC=C(OC)C=C4.[H]Cl.[H]Cl
InChi Key
MKSVFGKWZLUTTO-FZFAUISWSA-N
InChi Code
InChI=1S/C22H29N7O5.2ClH/c1-28(2)19-17-20(25-10-24-19)29(11-26-17)22-18(31)16(15(9-30)34-22)27-21(32)14(23)8-12-4-6-13(33-3)7-5-12;;/h4-7,10-11,14-16,18,22,30-31H,8-9,23H2,1-3H3,(H,27,32);2*1H/t14-,15+,16+,18+,22+;;/m0../s1
Chemical Name
(2S)-2-Amino-N-[(2S,3S,4R,5R)-5-[6-(dimethylamino)purin-9-yl]-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]-3-(4-methoxyphenyl)propanamide dihydrochloride
Synonyms
Puromycin Dihydrochloride; Puromycin 2HCl; CL13900 2HCl; CL-13900 dihydrochloride; CL 13900 dihydrochloride; Puromycine; NSC-3055; NSC3055; NSC 3055
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 50~100 mg/mL ( 91.84~183.67 mM)
Methanol :~250 mg/mL (~459.20 mM)
Water : 50 ~100 mg/mL (~91.84 mM )
Ethanol :~5 mg/mL (~9.18 mM )
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.59 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.82 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.82 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 0.5 mg/mL (0.92 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix well.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 5: 0.5 mg/mL (0.92 mM) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 6: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 2.5 mg/mL (4.59 mM)

Solubility in Formulation 7: 100 mg/mL (183.68 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8368 mL 9.1839 mL 18.3678 mL
5 mM 0.3674 mL 1.8368 mL 3.6736 mL
10 mM 0.1837 mL 0.9184 mL 1.8368 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Amino acid sequence (A) and DNA templates (B and C) for modification of tau4R. [2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
  • Inhibition of protein synthesis in an E.coli cell-free system by puromycin and its derivatives.[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
  • Specific bonding of 32P-labeled puromycin derivatives to full-length tau4R.[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
  • The carboxypeptidase digestion assay to detect specific bonding of puromycin and its derivatives to full-length tau4R.[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
  • Specific bonding of puromycin or its derivatives to the 35S-labeled C-terminal of full-length tau4R.[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
  • Inhibition of specific bonding of 32P-labeled rCpPuro to tau4R by RF-1 and RF-2.[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
  • A possible model of specific bonding of puromycin to full-length protein.[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
Contact Us Back to top