Montelukast (MK476; Singulair)

Alias: MK-476; MK 476; MK0476; trade names Singulair; Monteflo; Lukotas; Lumona
Cat No.:V6904 Purity: ≥98%
Montelukast (also known as MK-476; MK 476; MK0476; trade names Singulair; Monteflo; Lukotas; Lumona) is a novel, potent, selectiveCysLT1(leukotriene receptor) receptor antagonist used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergies.
Montelukast (MK476; Singulair) Chemical Structure CAS No.: 158966-92-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
Other Sizes

Other Forms of Montelukast (MK476; Singulair):

  • MONTELUKAST SODIUM (MK0476)
  • Montelukast Dicyclohexylamine
  • Montelukast-d6 (MK0476-d6 (free acid))
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Montelukast (also known as MK-476; MK 476; MK0476; trade names Singulair; Monteflo; Lukotas; Lumona) is a novel, potent, selective CysLT1 (leukotriene receptor) receptor antagonist used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergies. Montelukast blocks the action of leukotriene D4 (and secondary ligands LTC4 and LTE4) on the cysteinyl leukotriene receptor CysLT1 in the lungs and bronchial tubes by binding to it. This reduces the bronchoconstriction otherwise caused by the leukotriene and results in less inflammation.

Biological Activity I Assay Protocols (From Reference)
Targets
CysLT1
ln Vitro
Montelukast (5 μM; 1 hour) prevents cell damage caused by acetaminophen (APAP) [1]. The 30-minute administration of montelukast (0.01-10 μM) inhibits the migration of cells produced by 5-oxo-ETE and modifies the activation of the plasmin-plasminogen system [3]. The 18-hour duration of 10 μM montelukast modifies MMP-9 activity [3].
ln Vivo
Montelukast (3 mg/kg; orally administered) shields mice from hepatotoxicity caused by APAP [1]. When administered via a micro-osmotic pump, montelukast (1 mg/kg) inhibits the production of cysteinyl leukotriene (LT) via the CysLT1 receptor and lessens the alterations in airway remodeling that occur in mice treated with OVA. C4, D4, and E4's roles[2]. Increased levels of IL-4 and IL-13 in the BAL fluid of mice treated with OVA can be decreased by administering 1 mg/kg of montelukast using a micro-osmotic pump [2].
Cell Assay
Cell migration assay [3]
Cell Types: Eosinophils
Tested Concentrations: 0.01-10 μM
Incubation Duration: 30 minutes
Experimental Results: diminished 5-oxo-ETE-induced cell migration.

Western Blot Analysis[3]
Cell Types: Eosinophils
Tested Concentrations: 10 μM
Incubation Duration: 18 hrs (hours)
Experimental Results: diminished 5-oxo-ETE-promoted MMP-9 secretion.
Animal Protocol
Animal/Disease Models: C57BL/6J mice (8 weeks old; 22-25 g) induced acute liver injury [1]
Doses: 3 mg/kg
Route of Administration: po (oral gavage) 1 hour after administration of normal saline or APAP
Experimental Results: Serum moderate alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and reduce liver damage.
References
[1]. Pu S, et, al. Montelukast Prevents Mice Against Acetaminophen-Induced Liver Injury. Front Pharmacol. 2019 Sep 18; 10:1070.
[2]. William RHJ, et, al. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med. 2002 Jan 1; 165(1): 108-16.
[3]. Langlois A, et al. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol. 2006;118(1):113-119.
[4]. Khan AR, et al. Montelukast in hospitalized patients diagnosed with COVID-19. J Asthma. 2022 Apr;59(4):780-786.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C35H36CLNO3S
Molecular Weight
586.18
Exact Mass
585.210442
Elemental Analysis
C, 71.72; H, 6.19; Cl, 6.05; N, 2.39; O, 8.19; S, 5.47
CAS #
158966-92-8
Related CAS #
Montelukast sodium;151767-02-1;Montelukast dicyclohexylamine;577953-88-9;Montelukast-d6;1093746-29-2
Appearance
Light yellow to yellow solid
LogP
7.7
tPSA
95.7Ų
SMILES
O=C(O)CC1(CS[C@@H](C2=CC=CC(/C=C/C3=NC4=CC(Cl)=CC=C4C=C3)=C2)CCC5=CC=CC=C5C(C)(O)C)CC1
InChi Key
UCHDWCPVSPXUMX-TZIWLTJVSA-N
InChi Code
InChI=1S/C35H36ClNO3S/c1-34(2,40)30-9-4-3-7-25(30)13-17-32(41-23-35(18-19-35)22-33(38)39)27-8-5-6-24(20-27)10-15-29-16-12-26-11-14-28(36)21-31(26)37-29/h3-12,14-16,20-21,32,40H,13,17-19,22-23H2,1-2H3,(H,38,39)/b15-10+/t32-/m1/s1
Chemical Name
Cyclopropaneacetic acid, 1-((((1R)-1-(3-((1E)-2-(7-chloro-2-quinolinyl)ethenyl)phenyl)-3-(2-(1-hydroxy-1-methylethyl)phenyl)propyl)thio)methyl)-
Synonyms
MK-476; MK 476; MK0476; trade names Singulair; Monteflo; Lukotas; Lumona
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~250 mg/mL (~426.49 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.08 mg/mL (3.55 mM) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 + to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7060 mL 8.5298 mL 17.0596 mL
5 mM 0.3412 mL 1.7060 mL 3.4119 mL
10 mM 0.1706 mL 0.8530 mL 1.7060 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top